Step |
Hyp |
Ref |
Expression |
1 |
|
elfzouz |
|- ( A e. ( 0 ..^ B ) -> A e. ( ZZ>= ` 0 ) ) |
2 |
|
elnn0uz |
|- ( A e. NN0 <-> A e. ( ZZ>= ` 0 ) ) |
3 |
1 2
|
sylibr |
|- ( A e. ( 0 ..^ B ) -> A e. NN0 ) |
4 |
|
elfzolt3b |
|- ( A e. ( 0 ..^ B ) -> 0 e. ( 0 ..^ B ) ) |
5 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ B ) <-> B e. NN ) |
6 |
4 5
|
sylib |
|- ( A e. ( 0 ..^ B ) -> B e. NN ) |
7 |
|
elfzolt2 |
|- ( A e. ( 0 ..^ B ) -> A < B ) |
8 |
3 6 7
|
3jca |
|- ( A e. ( 0 ..^ B ) -> ( A e. NN0 /\ B e. NN /\ A < B ) ) |
9 |
|
simp1 |
|- ( ( A e. NN0 /\ B e. NN /\ A < B ) -> A e. NN0 ) |
10 |
9 2
|
sylib |
|- ( ( A e. NN0 /\ B e. NN /\ A < B ) -> A e. ( ZZ>= ` 0 ) ) |
11 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
12 |
11
|
3ad2ant2 |
|- ( ( A e. NN0 /\ B e. NN /\ A < B ) -> B e. ZZ ) |
13 |
|
simp3 |
|- ( ( A e. NN0 /\ B e. NN /\ A < B ) -> A < B ) |
14 |
|
elfzo2 |
|- ( A e. ( 0 ..^ B ) <-> ( A e. ( ZZ>= ` 0 ) /\ B e. ZZ /\ A < B ) ) |
15 |
10 12 13 14
|
syl3anbrc |
|- ( ( A e. NN0 /\ B e. NN /\ A < B ) -> A e. ( 0 ..^ B ) ) |
16 |
8 15
|
impbii |
|- ( A e. ( 0 ..^ B ) <-> ( A e. NN0 /\ B e. NN /\ A < B ) ) |