Step |
Hyp |
Ref |
Expression |
1 |
|
fzossnn |
|- ( 1 ..^ M ) C_ NN |
2 |
1
|
sseli |
|- ( N e. ( 1 ..^ M ) -> N e. NN ) |
3 |
|
elfzouz2 |
|- ( N e. ( 1 ..^ M ) -> M e. ( ZZ>= ` N ) ) |
4 |
|
eluznn |
|- ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> M e. NN ) |
5 |
2 3 4
|
syl2anc |
|- ( N e. ( 1 ..^ M ) -> M e. NN ) |
6 |
|
elfzolt2 |
|- ( N e. ( 1 ..^ M ) -> N < M ) |
7 |
2 5 6
|
3jca |
|- ( N e. ( 1 ..^ M ) -> ( N e. NN /\ M e. NN /\ N < M ) ) |
8 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
9 |
8
|
eqimssi |
|- NN C_ ( ZZ>= ` 1 ) |
10 |
9
|
sseli |
|- ( N e. NN -> N e. ( ZZ>= ` 1 ) ) |
11 |
|
nnz |
|- ( M e. NN -> M e. ZZ ) |
12 |
|
id |
|- ( N < M -> N < M ) |
13 |
10 11 12
|
3anim123i |
|- ( ( N e. NN /\ M e. NN /\ N < M ) -> ( N e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ N < M ) ) |
14 |
|
elfzo2 |
|- ( N e. ( 1 ..^ M ) <-> ( N e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ N < M ) ) |
15 |
13 14
|
sylibr |
|- ( ( N e. NN /\ M e. NN /\ N < M ) -> N e. ( 1 ..^ M ) ) |
16 |
7 15
|
impbii |
|- ( N e. ( 1 ..^ M ) <-> ( N e. NN /\ M e. NN /\ N < M ) ) |