Metamath Proof Explorer


Theorem elfzo1elm1fzo0

Description: Membership of a positive integer decremented by one in a half-open range of nonnegative integers. (Contributed by AV, 20-Mar-2021)

Ref Expression
Assertion elfzo1elm1fzo0
|- ( I e. ( 1 ..^ N ) -> ( I - 1 ) e. ( 0 ..^ ( N - 1 ) ) )

Proof

Step Hyp Ref Expression
1 elfzoelz
 |-  ( I e. ( 1 ..^ N ) -> I e. ZZ )
2 elfzoel2
 |-  ( I e. ( 1 ..^ N ) -> N e. ZZ )
3 1 2 jca
 |-  ( I e. ( 1 ..^ N ) -> ( I e. ZZ /\ N e. ZZ ) )
4 elfzom1b
 |-  ( ( I e. ZZ /\ N e. ZZ ) -> ( I e. ( 1 ..^ N ) <-> ( I - 1 ) e. ( 0 ..^ ( N - 1 ) ) ) )
5 4 biimpd
 |-  ( ( I e. ZZ /\ N e. ZZ ) -> ( I e. ( 1 ..^ N ) -> ( I - 1 ) e. ( 0 ..^ ( N - 1 ) ) ) )
6 3 5 mpcom
 |-  ( I e. ( 1 ..^ N ) -> ( I - 1 ) e. ( 0 ..^ ( N - 1 ) ) )