Metamath Proof Explorer


Theorem elfzolem1

Description: A member in a half-open integer interval is less than or equal to the upper bound minus 1 . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion elfzolem1
|- ( K e. ( M ..^ N ) -> K <_ ( N - 1 ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( K e. ( M ..^ N ) -> K e. ( M ..^ N ) )
2 elfzoel2
 |-  ( K e. ( M ..^ N ) -> N e. ZZ )
3 simpl
 |-  ( ( K e. ( M ..^ N ) /\ N e. ZZ ) -> K e. ( M ..^ N ) )
4 fzoval
 |-  ( N e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) )
5 4 adantl
 |-  ( ( K e. ( M ..^ N ) /\ N e. ZZ ) -> ( M ..^ N ) = ( M ... ( N - 1 ) ) )
6 3 5 eleqtrd
 |-  ( ( K e. ( M ..^ N ) /\ N e. ZZ ) -> K e. ( M ... ( N - 1 ) ) )
7 elfzle2
 |-  ( K e. ( M ... ( N - 1 ) ) -> K <_ ( N - 1 ) )
8 6 7 syl
 |-  ( ( K e. ( M ..^ N ) /\ N e. ZZ ) -> K <_ ( N - 1 ) )
9 1 2 8 syl2anc
 |-  ( K e. ( M ..^ N ) -> K <_ ( N - 1 ) )