Metamath Proof Explorer


Theorem elfzolt3

Description: Membership in a half-open integer interval implies that the bounds are unequal. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion elfzolt3
|- ( K e. ( M ..^ N ) -> M < N )

Proof

Step Hyp Ref Expression
1 elfzoel1
 |-  ( K e. ( M ..^ N ) -> M e. ZZ )
2 1 zred
 |-  ( K e. ( M ..^ N ) -> M e. RR )
3 elfzoelz
 |-  ( K e. ( M ..^ N ) -> K e. ZZ )
4 3 zred
 |-  ( K e. ( M ..^ N ) -> K e. RR )
5 elfzoel2
 |-  ( K e. ( M ..^ N ) -> N e. ZZ )
6 5 zred
 |-  ( K e. ( M ..^ N ) -> N e. RR )
7 elfzole1
 |-  ( K e. ( M ..^ N ) -> M <_ K )
8 elfzolt2
 |-  ( K e. ( M ..^ N ) -> K < N )
9 2 4 6 7 8 lelttrd
 |-  ( K e. ( M ..^ N ) -> M < N )