Metamath Proof Explorer


Theorem elfzom1p1elfzo

Description: Increasing an element of a half-open range of nonnegative integers by 1 results in an element of the half-open range of nonnegative integers with an upper bound increased by 1. (Contributed by Alexander van der Vekens, 1-Aug-2018) (Proof shortened by Thierry Arnoux, 14-Dec-2023)

Ref Expression
Assertion elfzom1p1elfzo
|- ( ( N e. NN /\ X e. ( 0 ..^ ( N - 1 ) ) ) -> ( X + 1 ) e. ( 0 ..^ N ) )

Proof

Step Hyp Ref Expression
1 nnz
 |-  ( N e. NN -> N e. ZZ )
2 elfzom1elp1fzo
 |-  ( ( N e. ZZ /\ X e. ( 0 ..^ ( N - 1 ) ) ) -> ( X + 1 ) e. ( 0 ..^ N ) )
3 1 2 sylan
 |-  ( ( N e. NN /\ X e. ( 0 ..^ ( N - 1 ) ) ) -> ( X + 1 ) e. ( 0 ..^ N ) )