Step |
Hyp |
Ref |
Expression |
1 |
|
0z |
|- 0 e. ZZ |
2 |
|
elfzo0 |
|- ( A e. ( 0 ..^ B ) <-> ( A e. NN0 /\ B e. NN /\ A < B ) ) |
3 |
|
elnnuz |
|- ( B e. NN <-> B e. ( ZZ>= ` 1 ) ) |
4 |
3
|
biimpi |
|- ( B e. NN -> B e. ( ZZ>= ` 1 ) ) |
5 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
6 |
5
|
a1i |
|- ( B e. NN -> ( 0 + 1 ) = 1 ) |
7 |
6
|
fveq2d |
|- ( B e. NN -> ( ZZ>= ` ( 0 + 1 ) ) = ( ZZ>= ` 1 ) ) |
8 |
4 7
|
eleqtrrd |
|- ( B e. NN -> B e. ( ZZ>= ` ( 0 + 1 ) ) ) |
9 |
8
|
3ad2ant2 |
|- ( ( A e. NN0 /\ B e. NN /\ A < B ) -> B e. ( ZZ>= ` ( 0 + 1 ) ) ) |
10 |
2 9
|
sylbi |
|- ( A e. ( 0 ..^ B ) -> B e. ( ZZ>= ` ( 0 + 1 ) ) ) |
11 |
|
fzosplitsnm1 |
|- ( ( 0 e. ZZ /\ B e. ( ZZ>= ` ( 0 + 1 ) ) ) -> ( 0 ..^ B ) = ( ( 0 ..^ ( B - 1 ) ) u. { ( B - 1 ) } ) ) |
12 |
1 10 11
|
sylancr |
|- ( A e. ( 0 ..^ B ) -> ( 0 ..^ B ) = ( ( 0 ..^ ( B - 1 ) ) u. { ( B - 1 ) } ) ) |
13 |
|
eleq2 |
|- ( ( 0 ..^ B ) = ( ( 0 ..^ ( B - 1 ) ) u. { ( B - 1 ) } ) -> ( A e. ( 0 ..^ B ) <-> A e. ( ( 0 ..^ ( B - 1 ) ) u. { ( B - 1 ) } ) ) ) |
14 |
|
elun |
|- ( A e. ( ( 0 ..^ ( B - 1 ) ) u. { ( B - 1 ) } ) <-> ( A e. ( 0 ..^ ( B - 1 ) ) \/ A e. { ( B - 1 ) } ) ) |
15 |
|
elfzo0 |
|- ( A e. ( 0 ..^ ( B - 1 ) ) <-> ( A e. NN0 /\ ( B - 1 ) e. NN /\ A < ( B - 1 ) ) ) |
16 |
|
pm2.24 |
|- ( A < ( B - 1 ) -> ( -. A < ( B - 1 ) -> A = ( B - 1 ) ) ) |
17 |
16
|
3ad2ant3 |
|- ( ( A e. NN0 /\ ( B - 1 ) e. NN /\ A < ( B - 1 ) ) -> ( -. A < ( B - 1 ) -> A = ( B - 1 ) ) ) |
18 |
15 17
|
sylbi |
|- ( A e. ( 0 ..^ ( B - 1 ) ) -> ( -. A < ( B - 1 ) -> A = ( B - 1 ) ) ) |
19 |
|
elsni |
|- ( A e. { ( B - 1 ) } -> A = ( B - 1 ) ) |
20 |
19
|
a1d |
|- ( A e. { ( B - 1 ) } -> ( -. A < ( B - 1 ) -> A = ( B - 1 ) ) ) |
21 |
18 20
|
jaoi |
|- ( ( A e. ( 0 ..^ ( B - 1 ) ) \/ A e. { ( B - 1 ) } ) -> ( -. A < ( B - 1 ) -> A = ( B - 1 ) ) ) |
22 |
14 21
|
sylbi |
|- ( A e. ( ( 0 ..^ ( B - 1 ) ) u. { ( B - 1 ) } ) -> ( -. A < ( B - 1 ) -> A = ( B - 1 ) ) ) |
23 |
13 22
|
syl6bi |
|- ( ( 0 ..^ B ) = ( ( 0 ..^ ( B - 1 ) ) u. { ( B - 1 ) } ) -> ( A e. ( 0 ..^ B ) -> ( -. A < ( B - 1 ) -> A = ( B - 1 ) ) ) ) |
24 |
12 23
|
mpcom |
|- ( A e. ( 0 ..^ B ) -> ( -. A < ( B - 1 ) -> A = ( B - 1 ) ) ) |
25 |
24
|
imp |
|- ( ( A e. ( 0 ..^ B ) /\ -. A < ( B - 1 ) ) -> A = ( B - 1 ) ) |