| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0z |  |-  0 e. ZZ | 
						
							| 2 |  | elfzo0 |  |-  ( A e. ( 0 ..^ B ) <-> ( A e. NN0 /\ B e. NN /\ A < B ) ) | 
						
							| 3 |  | elnnuz |  |-  ( B e. NN <-> B e. ( ZZ>= ` 1 ) ) | 
						
							| 4 | 3 | biimpi |  |-  ( B e. NN -> B e. ( ZZ>= ` 1 ) ) | 
						
							| 5 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 6 | 5 | a1i |  |-  ( B e. NN -> ( 0 + 1 ) = 1 ) | 
						
							| 7 | 6 | fveq2d |  |-  ( B e. NN -> ( ZZ>= ` ( 0 + 1 ) ) = ( ZZ>= ` 1 ) ) | 
						
							| 8 | 4 7 | eleqtrrd |  |-  ( B e. NN -> B e. ( ZZ>= ` ( 0 + 1 ) ) ) | 
						
							| 9 | 8 | 3ad2ant2 |  |-  ( ( A e. NN0 /\ B e. NN /\ A < B ) -> B e. ( ZZ>= ` ( 0 + 1 ) ) ) | 
						
							| 10 | 2 9 | sylbi |  |-  ( A e. ( 0 ..^ B ) -> B e. ( ZZ>= ` ( 0 + 1 ) ) ) | 
						
							| 11 |  | fzosplitsnm1 |  |-  ( ( 0 e. ZZ /\ B e. ( ZZ>= ` ( 0 + 1 ) ) ) -> ( 0 ..^ B ) = ( ( 0 ..^ ( B - 1 ) ) u. { ( B - 1 ) } ) ) | 
						
							| 12 | 1 10 11 | sylancr |  |-  ( A e. ( 0 ..^ B ) -> ( 0 ..^ B ) = ( ( 0 ..^ ( B - 1 ) ) u. { ( B - 1 ) } ) ) | 
						
							| 13 |  | eleq2 |  |-  ( ( 0 ..^ B ) = ( ( 0 ..^ ( B - 1 ) ) u. { ( B - 1 ) } ) -> ( A e. ( 0 ..^ B ) <-> A e. ( ( 0 ..^ ( B - 1 ) ) u. { ( B - 1 ) } ) ) ) | 
						
							| 14 |  | elun |  |-  ( A e. ( ( 0 ..^ ( B - 1 ) ) u. { ( B - 1 ) } ) <-> ( A e. ( 0 ..^ ( B - 1 ) ) \/ A e. { ( B - 1 ) } ) ) | 
						
							| 15 |  | elfzo0 |  |-  ( A e. ( 0 ..^ ( B - 1 ) ) <-> ( A e. NN0 /\ ( B - 1 ) e. NN /\ A < ( B - 1 ) ) ) | 
						
							| 16 |  | pm2.24 |  |-  ( A < ( B - 1 ) -> ( -. A < ( B - 1 ) -> A = ( B - 1 ) ) ) | 
						
							| 17 | 16 | 3ad2ant3 |  |-  ( ( A e. NN0 /\ ( B - 1 ) e. NN /\ A < ( B - 1 ) ) -> ( -. A < ( B - 1 ) -> A = ( B - 1 ) ) ) | 
						
							| 18 | 15 17 | sylbi |  |-  ( A e. ( 0 ..^ ( B - 1 ) ) -> ( -. A < ( B - 1 ) -> A = ( B - 1 ) ) ) | 
						
							| 19 |  | elsni |  |-  ( A e. { ( B - 1 ) } -> A = ( B - 1 ) ) | 
						
							| 20 | 19 | a1d |  |-  ( A e. { ( B - 1 ) } -> ( -. A < ( B - 1 ) -> A = ( B - 1 ) ) ) | 
						
							| 21 | 18 20 | jaoi |  |-  ( ( A e. ( 0 ..^ ( B - 1 ) ) \/ A e. { ( B - 1 ) } ) -> ( -. A < ( B - 1 ) -> A = ( B - 1 ) ) ) | 
						
							| 22 | 14 21 | sylbi |  |-  ( A e. ( ( 0 ..^ ( B - 1 ) ) u. { ( B - 1 ) } ) -> ( -. A < ( B - 1 ) -> A = ( B - 1 ) ) ) | 
						
							| 23 | 13 22 | biimtrdi |  |-  ( ( 0 ..^ B ) = ( ( 0 ..^ ( B - 1 ) ) u. { ( B - 1 ) } ) -> ( A e. ( 0 ..^ B ) -> ( -. A < ( B - 1 ) -> A = ( B - 1 ) ) ) ) | 
						
							| 24 | 12 23 | mpcom |  |-  ( A e. ( 0 ..^ B ) -> ( -. A < ( B - 1 ) -> A = ( B - 1 ) ) ) | 
						
							| 25 | 24 | imp |  |-  ( ( A e. ( 0 ..^ B ) /\ -. A < ( B - 1 ) ) -> A = ( B - 1 ) ) |