Metamath Proof Explorer


Theorem elfzonn0

Description: A member of a half-open range of nonnegative integers is a nonnegative integer. (Contributed by Alexander van der Vekens, 21-May-2018)

Ref Expression
Assertion elfzonn0
|- ( K e. ( 0 ..^ N ) -> K e. NN0 )

Proof

Step Hyp Ref Expression
1 elfzouz
 |-  ( K e. ( 0 ..^ N ) -> K e. ( ZZ>= ` 0 ) )
2 elnn0uz
 |-  ( K e. NN0 <-> K e. ( ZZ>= ` 0 ) )
3 1 2 sylibr
 |-  ( K e. ( 0 ..^ N ) -> K e. NN0 )