Metamath Proof Explorer


Theorem elfzop1le2

Description: A member in a half-open integer interval plus 1 is less than or equal to the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion elfzop1le2
|- ( K e. ( M ..^ N ) -> ( K + 1 ) <_ N )

Proof

Step Hyp Ref Expression
1 elfzolt2
 |-  ( K e. ( M ..^ N ) -> K < N )
2 elfzoelz
 |-  ( K e. ( M ..^ N ) -> K e. ZZ )
3 elfzoel2
 |-  ( K e. ( M ..^ N ) -> N e. ZZ )
4 zltp1le
 |-  ( ( K e. ZZ /\ N e. ZZ ) -> ( K < N <-> ( K + 1 ) <_ N ) )
5 2 3 4 syl2anc
 |-  ( K e. ( M ..^ N ) -> ( K < N <-> ( K + 1 ) <_ N ) )
6 1 5 mpbid
 |-  ( K e. ( M ..^ N ) -> ( K + 1 ) <_ N )