| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elex |  |-  ( K e. ( M ... N ) -> K e. _V ) | 
						
							| 2 | 1 | anim2i |  |-  ( ( N e. ( ZZ>= ` M ) /\ K e. ( M ... N ) ) -> ( N e. ( ZZ>= ` M ) /\ K e. _V ) ) | 
						
							| 3 |  | elfvex |  |-  ( N e. ( ZZ>= ` M ) -> M e. _V ) | 
						
							| 4 |  | eleq1 |  |-  ( K = M -> ( K e. _V <-> M e. _V ) ) | 
						
							| 5 | 3 4 | syl5ibrcom |  |-  ( N e. ( ZZ>= ` M ) -> ( K = M -> K e. _V ) ) | 
						
							| 6 | 5 | imdistani |  |-  ( ( N e. ( ZZ>= ` M ) /\ K = M ) -> ( N e. ( ZZ>= ` M ) /\ K e. _V ) ) | 
						
							| 7 |  | elex |  |-  ( K e. ( ( M + 1 ) ... N ) -> K e. _V ) | 
						
							| 8 | 7 | anim2i |  |-  ( ( N e. ( ZZ>= ` M ) /\ K e. ( ( M + 1 ) ... N ) ) -> ( N e. ( ZZ>= ` M ) /\ K e. _V ) ) | 
						
							| 9 | 6 8 | jaodan |  |-  ( ( N e. ( ZZ>= ` M ) /\ ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) -> ( N e. ( ZZ>= ` M ) /\ K e. _V ) ) | 
						
							| 10 |  | fzpred |  |-  ( N e. ( ZZ>= ` M ) -> ( M ... N ) = ( { M } u. ( ( M + 1 ) ... N ) ) ) | 
						
							| 11 | 10 | eleq2d |  |-  ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... N ) <-> K e. ( { M } u. ( ( M + 1 ) ... N ) ) ) ) | 
						
							| 12 |  | elun |  |-  ( K e. ( { M } u. ( ( M + 1 ) ... N ) ) <-> ( K e. { M } \/ K e. ( ( M + 1 ) ... N ) ) ) | 
						
							| 13 | 11 12 | bitrdi |  |-  ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... N ) <-> ( K e. { M } \/ K e. ( ( M + 1 ) ... N ) ) ) ) | 
						
							| 14 |  | elsng |  |-  ( K e. _V -> ( K e. { M } <-> K = M ) ) | 
						
							| 15 | 14 | orbi1d |  |-  ( K e. _V -> ( ( K e. { M } \/ K e. ( ( M + 1 ) ... N ) ) <-> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) ) | 
						
							| 16 | 13 15 | sylan9bb |  |-  ( ( N e. ( ZZ>= ` M ) /\ K e. _V ) -> ( K e. ( M ... N ) <-> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) ) | 
						
							| 17 | 2 9 16 | pm5.21nd |  |-  ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... N ) <-> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) ) |