Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( K e. ( M ... N ) -> K e. _V ) |
2 |
1
|
anim2i |
|- ( ( N e. ( ZZ>= ` M ) /\ K e. ( M ... N ) ) -> ( N e. ( ZZ>= ` M ) /\ K e. _V ) ) |
3 |
|
elfvex |
|- ( N e. ( ZZ>= ` M ) -> M e. _V ) |
4 |
|
eleq1 |
|- ( K = M -> ( K e. _V <-> M e. _V ) ) |
5 |
3 4
|
syl5ibrcom |
|- ( N e. ( ZZ>= ` M ) -> ( K = M -> K e. _V ) ) |
6 |
5
|
imdistani |
|- ( ( N e. ( ZZ>= ` M ) /\ K = M ) -> ( N e. ( ZZ>= ` M ) /\ K e. _V ) ) |
7 |
|
elex |
|- ( K e. ( ( M + 1 ) ... N ) -> K e. _V ) |
8 |
7
|
anim2i |
|- ( ( N e. ( ZZ>= ` M ) /\ K e. ( ( M + 1 ) ... N ) ) -> ( N e. ( ZZ>= ` M ) /\ K e. _V ) ) |
9 |
6 8
|
jaodan |
|- ( ( N e. ( ZZ>= ` M ) /\ ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) -> ( N e. ( ZZ>= ` M ) /\ K e. _V ) ) |
10 |
|
fzpred |
|- ( N e. ( ZZ>= ` M ) -> ( M ... N ) = ( { M } u. ( ( M + 1 ) ... N ) ) ) |
11 |
10
|
eleq2d |
|- ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... N ) <-> K e. ( { M } u. ( ( M + 1 ) ... N ) ) ) ) |
12 |
|
elun |
|- ( K e. ( { M } u. ( ( M + 1 ) ... N ) ) <-> ( K e. { M } \/ K e. ( ( M + 1 ) ... N ) ) ) |
13 |
11 12
|
bitrdi |
|- ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... N ) <-> ( K e. { M } \/ K e. ( ( M + 1 ) ... N ) ) ) ) |
14 |
|
elsng |
|- ( K e. _V -> ( K e. { M } <-> K = M ) ) |
15 |
14
|
orbi1d |
|- ( K e. _V -> ( ( K e. { M } \/ K e. ( ( M + 1 ) ... N ) ) <-> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) ) |
16 |
13 15
|
sylan9bb |
|- ( ( N e. ( ZZ>= ` M ) /\ K e. _V ) -> ( K e. ( M ... N ) <-> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) ) |
17 |
2 9 16
|
pm5.21nd |
|- ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... N ) <-> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) ) |