Step |
Hyp |
Ref |
Expression |
1 |
|
peano2z |
|- ( K e. ZZ -> ( K + 1 ) e. ZZ ) |
2 |
|
1z |
|- 1 e. ZZ |
3 |
|
fzsubel |
|- ( ( ( 1 e. ZZ /\ N e. ZZ ) /\ ( ( K + 1 ) e. ZZ /\ 1 e. ZZ ) ) -> ( ( K + 1 ) e. ( 1 ... N ) <-> ( ( K + 1 ) - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) ) |
4 |
2 3
|
mpanl1 |
|- ( ( N e. ZZ /\ ( ( K + 1 ) e. ZZ /\ 1 e. ZZ ) ) -> ( ( K + 1 ) e. ( 1 ... N ) <-> ( ( K + 1 ) - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) ) |
5 |
2 4
|
mpanr2 |
|- ( ( N e. ZZ /\ ( K + 1 ) e. ZZ ) -> ( ( K + 1 ) e. ( 1 ... N ) <-> ( ( K + 1 ) - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) ) |
6 |
1 5
|
sylan2 |
|- ( ( N e. ZZ /\ K e. ZZ ) -> ( ( K + 1 ) e. ( 1 ... N ) <-> ( ( K + 1 ) - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) ) |
7 |
6
|
ancoms |
|- ( ( K e. ZZ /\ N e. ZZ ) -> ( ( K + 1 ) e. ( 1 ... N ) <-> ( ( K + 1 ) - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) ) |
8 |
|
zcn |
|- ( K e. ZZ -> K e. CC ) |
9 |
|
ax-1cn |
|- 1 e. CC |
10 |
|
pncan |
|- ( ( K e. CC /\ 1 e. CC ) -> ( ( K + 1 ) - 1 ) = K ) |
11 |
8 9 10
|
sylancl |
|- ( K e. ZZ -> ( ( K + 1 ) - 1 ) = K ) |
12 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
13 |
12
|
oveq1i |
|- ( ( 1 - 1 ) ... ( N - 1 ) ) = ( 0 ... ( N - 1 ) ) |
14 |
13
|
a1i |
|- ( K e. ZZ -> ( ( 1 - 1 ) ... ( N - 1 ) ) = ( 0 ... ( N - 1 ) ) ) |
15 |
11 14
|
eleq12d |
|- ( K e. ZZ -> ( ( ( K + 1 ) - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) <-> K e. ( 0 ... ( N - 1 ) ) ) ) |
16 |
15
|
adantr |
|- ( ( K e. ZZ /\ N e. ZZ ) -> ( ( ( K + 1 ) - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) <-> K e. ( 0 ... ( N - 1 ) ) ) ) |
17 |
7 16
|
bitr2d |
|- ( ( K e. ZZ /\ N e. ZZ ) -> ( K e. ( 0 ... ( N - 1 ) ) <-> ( K + 1 ) e. ( 1 ... N ) ) ) |