Step |
Hyp |
Ref |
Expression |
1 |
|
elghomlem1OLD.1 |
|- S = { f | ( f : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( f ` x ) H ( f ` y ) ) = ( f ` ( x G y ) ) ) } |
2 |
|
rnexg |
|- ( G e. GrpOp -> ran G e. _V ) |
3 |
|
rnexg |
|- ( H e. GrpOp -> ran H e. _V ) |
4 |
1
|
fabexg |
|- ( ( ran G e. _V /\ ran H e. _V ) -> S e. _V ) |
5 |
2 3 4
|
syl2an |
|- ( ( G e. GrpOp /\ H e. GrpOp ) -> S e. _V ) |
6 |
|
rneq |
|- ( g = G -> ran g = ran G ) |
7 |
6
|
feq2d |
|- ( g = G -> ( f : ran g --> ran h <-> f : ran G --> ran h ) ) |
8 |
|
oveq |
|- ( g = G -> ( x g y ) = ( x G y ) ) |
9 |
8
|
fveq2d |
|- ( g = G -> ( f ` ( x g y ) ) = ( f ` ( x G y ) ) ) |
10 |
9
|
eqeq2d |
|- ( g = G -> ( ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) <-> ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x G y ) ) ) ) |
11 |
6 10
|
raleqbidv |
|- ( g = G -> ( A. y e. ran g ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) <-> A. y e. ran G ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x G y ) ) ) ) |
12 |
6 11
|
raleqbidv |
|- ( g = G -> ( A. x e. ran g A. y e. ran g ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) <-> A. x e. ran G A. y e. ran G ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x G y ) ) ) ) |
13 |
7 12
|
anbi12d |
|- ( g = G -> ( ( f : ran g --> ran h /\ A. x e. ran g A. y e. ran g ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) ) <-> ( f : ran G --> ran h /\ A. x e. ran G A. y e. ran G ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x G y ) ) ) ) ) |
14 |
13
|
abbidv |
|- ( g = G -> { f | ( f : ran g --> ran h /\ A. x e. ran g A. y e. ran g ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) ) } = { f | ( f : ran G --> ran h /\ A. x e. ran G A. y e. ran G ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x G y ) ) ) } ) |
15 |
|
rneq |
|- ( h = H -> ran h = ran H ) |
16 |
15
|
feq3d |
|- ( h = H -> ( f : ran G --> ran h <-> f : ran G --> ran H ) ) |
17 |
|
oveq |
|- ( h = H -> ( ( f ` x ) h ( f ` y ) ) = ( ( f ` x ) H ( f ` y ) ) ) |
18 |
17
|
eqeq1d |
|- ( h = H -> ( ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x G y ) ) <-> ( ( f ` x ) H ( f ` y ) ) = ( f ` ( x G y ) ) ) ) |
19 |
18
|
2ralbidv |
|- ( h = H -> ( A. x e. ran G A. y e. ran G ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x G y ) ) <-> A. x e. ran G A. y e. ran G ( ( f ` x ) H ( f ` y ) ) = ( f ` ( x G y ) ) ) ) |
20 |
16 19
|
anbi12d |
|- ( h = H -> ( ( f : ran G --> ran h /\ A. x e. ran G A. y e. ran G ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x G y ) ) ) <-> ( f : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( f ` x ) H ( f ` y ) ) = ( f ` ( x G y ) ) ) ) ) |
21 |
20
|
abbidv |
|- ( h = H -> { f | ( f : ran G --> ran h /\ A. x e. ran G A. y e. ran G ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x G y ) ) ) } = { f | ( f : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( f ` x ) H ( f ` y ) ) = ( f ` ( x G y ) ) ) } ) |
22 |
21 1
|
eqtr4di |
|- ( h = H -> { f | ( f : ran G --> ran h /\ A. x e. ran G A. y e. ran G ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x G y ) ) ) } = S ) |
23 |
|
df-ghomOLD |
|- GrpOpHom = ( g e. GrpOp , h e. GrpOp |-> { f | ( f : ran g --> ran h /\ A. x e. ran g A. y e. ran g ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) ) } ) |
24 |
14 22 23
|
ovmpog |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ S e. _V ) -> ( G GrpOpHom H ) = S ) |
25 |
5 24
|
mpd3an3 |
|- ( ( G e. GrpOp /\ H e. GrpOp ) -> ( G GrpOpHom H ) = S ) |