Step |
Hyp |
Ref |
Expression |
1 |
|
elghomlem1OLD.1 |
|- S = { f | ( f : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( f ` x ) H ( f ` y ) ) = ( f ` ( x G y ) ) ) } |
2 |
1
|
elghomlem1OLD |
|- ( ( G e. GrpOp /\ H e. GrpOp ) -> ( G GrpOpHom H ) = S ) |
3 |
2
|
eleq2d |
|- ( ( G e. GrpOp /\ H e. GrpOp ) -> ( F e. ( G GrpOpHom H ) <-> F e. S ) ) |
4 |
|
elex |
|- ( F e. S -> F e. _V ) |
5 |
|
feq1 |
|- ( f = F -> ( f : ran G --> ran H <-> F : ran G --> ran H ) ) |
6 |
|
fveq1 |
|- ( f = F -> ( f ` x ) = ( F ` x ) ) |
7 |
|
fveq1 |
|- ( f = F -> ( f ` y ) = ( F ` y ) ) |
8 |
6 7
|
oveq12d |
|- ( f = F -> ( ( f ` x ) H ( f ` y ) ) = ( ( F ` x ) H ( F ` y ) ) ) |
9 |
|
fveq1 |
|- ( f = F -> ( f ` ( x G y ) ) = ( F ` ( x G y ) ) ) |
10 |
8 9
|
eqeq12d |
|- ( f = F -> ( ( ( f ` x ) H ( f ` y ) ) = ( f ` ( x G y ) ) <-> ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) |
11 |
10
|
2ralbidv |
|- ( f = F -> ( A. x e. ran G A. y e. ran G ( ( f ` x ) H ( f ` y ) ) = ( f ` ( x G y ) ) <-> A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) |
12 |
5 11
|
anbi12d |
|- ( f = F -> ( ( f : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( f ` x ) H ( f ` y ) ) = ( f ` ( x G y ) ) ) <-> ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) |
13 |
12 1
|
elab2g |
|- ( F e. _V -> ( F e. S <-> ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) |
14 |
13
|
biimpd |
|- ( F e. _V -> ( F e. S -> ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) |
15 |
4 14
|
mpcom |
|- ( F e. S -> ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) |
16 |
|
rnexg |
|- ( G e. GrpOp -> ran G e. _V ) |
17 |
|
fex |
|- ( ( F : ran G --> ran H /\ ran G e. _V ) -> F e. _V ) |
18 |
17
|
expcom |
|- ( ran G e. _V -> ( F : ran G --> ran H -> F e. _V ) ) |
19 |
16 18
|
syl |
|- ( G e. GrpOp -> ( F : ran G --> ran H -> F e. _V ) ) |
20 |
19
|
adantrd |
|- ( G e. GrpOp -> ( ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) -> F e. _V ) ) |
21 |
13
|
biimprd |
|- ( F e. _V -> ( ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) -> F e. S ) ) |
22 |
20 21
|
syli |
|- ( G e. GrpOp -> ( ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) -> F e. S ) ) |
23 |
15 22
|
impbid2 |
|- ( G e. GrpOp -> ( F e. S <-> ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) |
24 |
23
|
adantr |
|- ( ( G e. GrpOp /\ H e. GrpOp ) -> ( F e. S <-> ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) |
25 |
3 24
|
bitrd |
|- ( ( G e. GrpOp /\ H e. GrpOp ) -> ( F e. ( G GrpOpHom H ) <-> ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) |