Metamath Proof Explorer


Theorem elharval

Description: The Hartogs number of a set contains exactly the ordinals that set dominates. Combined with harcl , this implies that the Hartogs number of a set is greater than all ordinals that set dominates. (Contributed by Stefan O'Rear, 11-Feb-2015) (Revised by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion elharval
|- ( Y e. ( har ` X ) <-> ( Y e. On /\ Y ~<_ X ) )

Proof

Step Hyp Ref Expression
1 elfvex
 |-  ( Y e. ( har ` X ) -> X e. _V )
2 reldom
 |-  Rel ~<_
3 2 brrelex2i
 |-  ( Y ~<_ X -> X e. _V )
4 3 adantl
 |-  ( ( Y e. On /\ Y ~<_ X ) -> X e. _V )
5 harval
 |-  ( X e. _V -> ( har ` X ) = { y e. On | y ~<_ X } )
6 5 eleq2d
 |-  ( X e. _V -> ( Y e. ( har ` X ) <-> Y e. { y e. On | y ~<_ X } ) )
7 breq1
 |-  ( y = Y -> ( y ~<_ X <-> Y ~<_ X ) )
8 7 elrab
 |-  ( Y e. { y e. On | y ~<_ X } <-> ( Y e. On /\ Y ~<_ X ) )
9 6 8 bitrdi
 |-  ( X e. _V -> ( Y e. ( har ` X ) <-> ( Y e. On /\ Y ~<_ X ) ) )
10 1 4 9 pm5.21nii
 |-  ( Y e. ( har ` X ) <-> ( Y e. On /\ Y ~<_ X ) )