| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							homarcl.h | 
							 |-  H = ( HomA ` C )  | 
						
						
							| 2 | 
							
								
							 | 
							homafval.b | 
							 |-  B = ( Base ` C )  | 
						
						
							| 3 | 
							
								
							 | 
							homafval.c | 
							 |-  ( ph -> C e. Cat )  | 
						
						
							| 4 | 
							
								
							 | 
							homaval.j | 
							 |-  J = ( Hom ` C )  | 
						
						
							| 5 | 
							
								
							 | 
							homaval.x | 
							 |-  ( ph -> X e. B )  | 
						
						
							| 6 | 
							
								
							 | 
							homaval.y | 
							 |-  ( ph -> Y e. B )  | 
						
						
							| 7 | 
							
								1 2 3 4 5 6
							 | 
							homaval | 
							 |-  ( ph -> ( X H Y ) = ( { <. X , Y >. } X. ( X J Y ) ) ) | 
						
						
							| 8 | 
							
								7
							 | 
							breqd | 
							 |-  ( ph -> ( Z ( X H Y ) F <-> Z ( { <. X , Y >. } X. ( X J Y ) ) F ) ) | 
						
						
							| 9 | 
							
								
							 | 
							brxp | 
							 |-  ( Z ( { <. X , Y >. } X. ( X J Y ) ) F <-> ( Z e. { <. X , Y >. } /\ F e. ( X J Y ) ) ) | 
						
						
							| 10 | 
							
								
							 | 
							opex | 
							 |-  <. X , Y >. e. _V  | 
						
						
							| 11 | 
							
								10
							 | 
							elsn2 | 
							 |-  ( Z e. { <. X , Y >. } <-> Z = <. X , Y >. ) | 
						
						
							| 12 | 
							
								11
							 | 
							anbi1i | 
							 |-  ( ( Z e. { <. X , Y >. } /\ F e. ( X J Y ) ) <-> ( Z = <. X , Y >. /\ F e. ( X J Y ) ) ) | 
						
						
							| 13 | 
							
								9 12
							 | 
							bitri | 
							 |-  ( Z ( { <. X , Y >. } X. ( X J Y ) ) F <-> ( Z = <. X , Y >. /\ F e. ( X J Y ) ) ) | 
						
						
							| 14 | 
							
								8 13
							 | 
							bitrdi | 
							 |-  ( ph -> ( Z ( X H Y ) F <-> ( Z = <. X , Y >. /\ F e. ( X J Y ) ) ) )  |