Metamath Proof Explorer


Theorem elhomai

Description: Produce an arrow from a morphism. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homarcl.h
|- H = ( HomA ` C )
homafval.b
|- B = ( Base ` C )
homafval.c
|- ( ph -> C e. Cat )
homaval.j
|- J = ( Hom ` C )
homaval.x
|- ( ph -> X e. B )
homaval.y
|- ( ph -> Y e. B )
elhomai.f
|- ( ph -> F e. ( X J Y ) )
Assertion elhomai
|- ( ph -> <. X , Y >. ( X H Y ) F )

Proof

Step Hyp Ref Expression
1 homarcl.h
 |-  H = ( HomA ` C )
2 homafval.b
 |-  B = ( Base ` C )
3 homafval.c
 |-  ( ph -> C e. Cat )
4 homaval.j
 |-  J = ( Hom ` C )
5 homaval.x
 |-  ( ph -> X e. B )
6 homaval.y
 |-  ( ph -> Y e. B )
7 elhomai.f
 |-  ( ph -> F e. ( X J Y ) )
8 eqidd
 |-  ( ph -> <. X , Y >. = <. X , Y >. )
9 1 2 3 4 5 6 elhoma
 |-  ( ph -> ( <. X , Y >. ( X H Y ) F <-> ( <. X , Y >. = <. X , Y >. /\ F e. ( X J Y ) ) ) )
10 8 7 9 mpbir2and
 |-  ( ph -> <. X , Y >. ( X H Y ) F )