Description: Produce an arrow from a morphism. (Contributed by Mario Carneiro, 11-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | homarcl.h | |- H = ( HomA ` C ) |
|
homafval.b | |- B = ( Base ` C ) |
||
homafval.c | |- ( ph -> C e. Cat ) |
||
homaval.j | |- J = ( Hom ` C ) |
||
homaval.x | |- ( ph -> X e. B ) |
||
homaval.y | |- ( ph -> Y e. B ) |
||
elhomai.f | |- ( ph -> F e. ( X J Y ) ) |
||
Assertion | elhomai2 | |- ( ph -> <. X , Y , F >. e. ( X H Y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homarcl.h | |- H = ( HomA ` C ) |
|
2 | homafval.b | |- B = ( Base ` C ) |
|
3 | homafval.c | |- ( ph -> C e. Cat ) |
|
4 | homaval.j | |- J = ( Hom ` C ) |
|
5 | homaval.x | |- ( ph -> X e. B ) |
|
6 | homaval.y | |- ( ph -> Y e. B ) |
|
7 | elhomai.f | |- ( ph -> F e. ( X J Y ) ) |
|
8 | df-ot | |- <. X , Y , F >. = <. <. X , Y >. , F >. |
|
9 | 1 2 3 4 5 6 7 | elhomai | |- ( ph -> <. X , Y >. ( X H Y ) F ) |
10 | df-br | |- ( <. X , Y >. ( X H Y ) F <-> <. <. X , Y >. , F >. e. ( X H Y ) ) |
|
11 | 9 10 | sylib | |- ( ph -> <. <. X , Y >. , F >. e. ( X H Y ) ) |
12 | 8 11 | eqeltrid | |- ( ph -> <. X , Y , F >. e. ( X H Y ) ) |