Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eliccd.1 | |- ( ph -> A e. RR ) |
|
eliccd.2 | |- ( ph -> B e. RR ) |
||
eliccd.3 | |- ( ph -> C e. RR ) |
||
eliccd.4 | |- ( ph -> A <_ C ) |
||
eliccd.5 | |- ( ph -> C <_ B ) |
||
Assertion | eliccd | |- ( ph -> C e. ( A [,] B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliccd.1 | |- ( ph -> A e. RR ) |
|
2 | eliccd.2 | |- ( ph -> B e. RR ) |
|
3 | eliccd.3 | |- ( ph -> C e. RR ) |
|
4 | eliccd.4 | |- ( ph -> A <_ C ) |
|
5 | eliccd.5 | |- ( ph -> C <_ B ) |
|
6 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) ) |
|
7 | 1 2 6 | syl2anc | |- ( ph -> ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) ) |
8 | 3 4 5 7 | mpbir3and | |- ( ph -> C e. ( A [,] B ) ) |