Metamath Proof Explorer


Theorem eliccd

Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses eliccd.1
|- ( ph -> A e. RR )
eliccd.2
|- ( ph -> B e. RR )
eliccd.3
|- ( ph -> C e. RR )
eliccd.4
|- ( ph -> A <_ C )
eliccd.5
|- ( ph -> C <_ B )
Assertion eliccd
|- ( ph -> C e. ( A [,] B ) )

Proof

Step Hyp Ref Expression
1 eliccd.1
 |-  ( ph -> A e. RR )
2 eliccd.2
 |-  ( ph -> B e. RR )
3 eliccd.3
 |-  ( ph -> C e. RR )
4 eliccd.4
 |-  ( ph -> A <_ C )
5 eliccd.5
 |-  ( ph -> C <_ B )
6 elicc2
 |-  ( ( A e. RR /\ B e. RR ) -> ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) )
7 1 2 6 syl2anc
 |-  ( ph -> ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) )
8 3 4 5 7 mpbir3and
 |-  ( ph -> C e. ( A [,] B ) )