Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eliccd.1 | |- ( ph -> A e. RR ) | |
| eliccd.2 | |- ( ph -> B e. RR ) | ||
| eliccd.3 | |- ( ph -> C e. RR ) | ||
| eliccd.4 | |- ( ph -> A <_ C ) | ||
| eliccd.5 | |- ( ph -> C <_ B ) | ||
| Assertion | eliccd | |- ( ph -> C e. ( A [,] B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eliccd.1 | |- ( ph -> A e. RR ) | |
| 2 | eliccd.2 | |- ( ph -> B e. RR ) | |
| 3 | eliccd.3 | |- ( ph -> C e. RR ) | |
| 4 | eliccd.4 | |- ( ph -> A <_ C ) | |
| 5 | eliccd.5 | |- ( ph -> C <_ B ) | |
| 6 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) ) | |
| 7 | 1 2 6 | syl2anc | |- ( ph -> ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) ) | 
| 8 | 3 4 5 7 | mpbir3and | |- ( ph -> C e. ( A [,] B ) ) |