| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eliccnelico.1 |
|- ( ph -> A e. RR* ) |
| 2 |
|
eliccnelico.b |
|- ( ph -> B e. RR* ) |
| 3 |
|
eliccnelico.c |
|- ( ph -> C e. ( A [,] B ) ) |
| 4 |
|
eliccnelico.nel |
|- ( ph -> -. C e. ( A [,) B ) ) |
| 5 |
|
eliccxr |
|- ( C e. ( A [,] B ) -> C e. RR* ) |
| 6 |
3 5
|
syl |
|- ( ph -> C e. RR* ) |
| 7 |
|
iccleub |
|- ( ( A e. RR* /\ B e. RR* /\ C e. ( A [,] B ) ) -> C <_ B ) |
| 8 |
1 2 3 7
|
syl3anc |
|- ( ph -> C <_ B ) |
| 9 |
1
|
adantr |
|- ( ( ph /\ -. B <_ C ) -> A e. RR* ) |
| 10 |
2
|
adantr |
|- ( ( ph /\ -. B <_ C ) -> B e. RR* ) |
| 11 |
6
|
adantr |
|- ( ( ph /\ -. B <_ C ) -> C e. RR* ) |
| 12 |
|
iccgelb |
|- ( ( A e. RR* /\ B e. RR* /\ C e. ( A [,] B ) ) -> A <_ C ) |
| 13 |
1 2 3 12
|
syl3anc |
|- ( ph -> A <_ C ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ -. B <_ C ) -> A <_ C ) |
| 15 |
|
simpr |
|- ( ( ph /\ -. B <_ C ) -> -. B <_ C ) |
| 16 |
|
xrltnle |
|- ( ( C e. RR* /\ B e. RR* ) -> ( C < B <-> -. B <_ C ) ) |
| 17 |
6 2 16
|
syl2anc |
|- ( ph -> ( C < B <-> -. B <_ C ) ) |
| 18 |
17
|
adantr |
|- ( ( ph /\ -. B <_ C ) -> ( C < B <-> -. B <_ C ) ) |
| 19 |
15 18
|
mpbird |
|- ( ( ph /\ -. B <_ C ) -> C < B ) |
| 20 |
9 10 11 14 19
|
elicod |
|- ( ( ph /\ -. B <_ C ) -> C e. ( A [,) B ) ) |
| 21 |
4
|
adantr |
|- ( ( ph /\ -. B <_ C ) -> -. C e. ( A [,) B ) ) |
| 22 |
20 21
|
condan |
|- ( ph -> B <_ C ) |
| 23 |
6 2 8 22
|
xrletrid |
|- ( ph -> C = B ) |