Step |
Hyp |
Ref |
Expression |
1 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
2 |
|
elico1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A [,) B ) <-> ( C e. RR* /\ A <_ C /\ C < B ) ) ) |
3 |
1 2
|
sylan |
|- ( ( A e. RR /\ B e. RR* ) -> ( C e. ( A [,) B ) <-> ( C e. RR* /\ A <_ C /\ C < B ) ) ) |
4 |
|
mnfxr |
|- -oo e. RR* |
5 |
4
|
a1i |
|- ( ( ( A e. RR /\ B e. RR* ) /\ ( C e. RR* /\ A <_ C /\ C < B ) ) -> -oo e. RR* ) |
6 |
1
|
ad2antrr |
|- ( ( ( A e. RR /\ B e. RR* ) /\ ( C e. RR* /\ A <_ C /\ C < B ) ) -> A e. RR* ) |
7 |
|
simpr1 |
|- ( ( ( A e. RR /\ B e. RR* ) /\ ( C e. RR* /\ A <_ C /\ C < B ) ) -> C e. RR* ) |
8 |
|
mnflt |
|- ( A e. RR -> -oo < A ) |
9 |
8
|
ad2antrr |
|- ( ( ( A e. RR /\ B e. RR* ) /\ ( C e. RR* /\ A <_ C /\ C < B ) ) -> -oo < A ) |
10 |
|
simpr2 |
|- ( ( ( A e. RR /\ B e. RR* ) /\ ( C e. RR* /\ A <_ C /\ C < B ) ) -> A <_ C ) |
11 |
5 6 7 9 10
|
xrltletrd |
|- ( ( ( A e. RR /\ B e. RR* ) /\ ( C e. RR* /\ A <_ C /\ C < B ) ) -> -oo < C ) |
12 |
|
simplr |
|- ( ( ( A e. RR /\ B e. RR* ) /\ ( C e. RR* /\ A <_ C /\ C < B ) ) -> B e. RR* ) |
13 |
|
pnfxr |
|- +oo e. RR* |
14 |
13
|
a1i |
|- ( ( ( A e. RR /\ B e. RR* ) /\ ( C e. RR* /\ A <_ C /\ C < B ) ) -> +oo e. RR* ) |
15 |
|
simpr3 |
|- ( ( ( A e. RR /\ B e. RR* ) /\ ( C e. RR* /\ A <_ C /\ C < B ) ) -> C < B ) |
16 |
|
pnfge |
|- ( B e. RR* -> B <_ +oo ) |
17 |
16
|
ad2antlr |
|- ( ( ( A e. RR /\ B e. RR* ) /\ ( C e. RR* /\ A <_ C /\ C < B ) ) -> B <_ +oo ) |
18 |
7 12 14 15 17
|
xrltletrd |
|- ( ( ( A e. RR /\ B e. RR* ) /\ ( C e. RR* /\ A <_ C /\ C < B ) ) -> C < +oo ) |
19 |
|
xrrebnd |
|- ( C e. RR* -> ( C e. RR <-> ( -oo < C /\ C < +oo ) ) ) |
20 |
7 19
|
syl |
|- ( ( ( A e. RR /\ B e. RR* ) /\ ( C e. RR* /\ A <_ C /\ C < B ) ) -> ( C e. RR <-> ( -oo < C /\ C < +oo ) ) ) |
21 |
11 18 20
|
mpbir2and |
|- ( ( ( A e. RR /\ B e. RR* ) /\ ( C e. RR* /\ A <_ C /\ C < B ) ) -> C e. RR ) |
22 |
21 10 15
|
3jca |
|- ( ( ( A e. RR /\ B e. RR* ) /\ ( C e. RR* /\ A <_ C /\ C < B ) ) -> ( C e. RR /\ A <_ C /\ C < B ) ) |
23 |
22
|
ex |
|- ( ( A e. RR /\ B e. RR* ) -> ( ( C e. RR* /\ A <_ C /\ C < B ) -> ( C e. RR /\ A <_ C /\ C < B ) ) ) |
24 |
|
rexr |
|- ( C e. RR -> C e. RR* ) |
25 |
24
|
3anim1i |
|- ( ( C e. RR /\ A <_ C /\ C < B ) -> ( C e. RR* /\ A <_ C /\ C < B ) ) |
26 |
23 25
|
impbid1 |
|- ( ( A e. RR /\ B e. RR* ) -> ( ( C e. RR* /\ A <_ C /\ C < B ) <-> ( C e. RR /\ A <_ C /\ C < B ) ) ) |
27 |
3 26
|
bitrd |
|- ( ( A e. RR /\ B e. RR* ) -> ( C e. ( A [,) B ) <-> ( C e. RR /\ A <_ C /\ C < B ) ) ) |