Metamath Proof Explorer


Theorem elicod

Description: Membership in a left-closed right-open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses elicod.a
|- ( ph -> A e. RR* )
elicod.b
|- ( ph -> B e. RR* )
elicod.3
|- ( ph -> C e. RR* )
elicod.4
|- ( ph -> A <_ C )
elicod.5
|- ( ph -> C < B )
Assertion elicod
|- ( ph -> C e. ( A [,) B ) )

Proof

Step Hyp Ref Expression
1 elicod.a
 |-  ( ph -> A e. RR* )
2 elicod.b
 |-  ( ph -> B e. RR* )
3 elicod.3
 |-  ( ph -> C e. RR* )
4 elicod.4
 |-  ( ph -> A <_ C )
5 elicod.5
 |-  ( ph -> C < B )
6 elico1
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A [,) B ) <-> ( C e. RR* /\ A <_ C /\ C < B ) ) )
7 1 2 6 syl2anc
 |-  ( ph -> ( C e. ( A [,) B ) <-> ( C e. RR* /\ A <_ C /\ C < B ) ) )
8 3 4 5 7 mpbir3and
 |-  ( ph -> C e. ( A [,) B ) )