Description: Membership in a left-closed right-open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elicod.a | |- ( ph -> A e. RR* ) |
|
elicod.b | |- ( ph -> B e. RR* ) |
||
elicod.3 | |- ( ph -> C e. RR* ) |
||
elicod.4 | |- ( ph -> A <_ C ) |
||
elicod.5 | |- ( ph -> C < B ) |
||
Assertion | elicod | |- ( ph -> C e. ( A [,) B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicod.a | |- ( ph -> A e. RR* ) |
|
2 | elicod.b | |- ( ph -> B e. RR* ) |
|
3 | elicod.3 | |- ( ph -> C e. RR* ) |
|
4 | elicod.4 | |- ( ph -> A <_ C ) |
|
5 | elicod.5 | |- ( ph -> C < B ) |
|
6 | elico1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A [,) B ) <-> ( C e. RR* /\ A <_ C /\ C < B ) ) ) |
|
7 | 1 2 6 | syl2anc | |- ( ph -> ( C e. ( A [,) B ) <-> ( C e. RR* /\ A <_ C /\ C < B ) ) ) |
8 | 3 4 5 7 | mpbir3and | |- ( ph -> C e. ( A [,) B ) ) |