Step |
Hyp |
Ref |
Expression |
1 |
|
simpl1 |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( C e. ( A [,) B ) /\ -. C e. ( A (,) B ) ) ) -> A e. RR* ) |
2 |
|
simpl2 |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( C e. ( A [,) B ) /\ -. C e. ( A (,) B ) ) ) -> B e. RR* ) |
3 |
|
simprl |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( C e. ( A [,) B ) /\ -. C e. ( A (,) B ) ) ) -> C e. ( A [,) B ) ) |
4 |
|
elico1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A [,) B ) <-> ( C e. RR* /\ A <_ C /\ C < B ) ) ) |
5 |
4
|
biimpa |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. ( A [,) B ) ) -> ( C e. RR* /\ A <_ C /\ C < B ) ) |
6 |
5
|
simp1d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. ( A [,) B ) ) -> C e. RR* ) |
7 |
1 2 3 6
|
syl21anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( C e. ( A [,) B ) /\ -. C e. ( A (,) B ) ) ) -> C e. RR* ) |
8 |
5
|
simp2d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. ( A [,) B ) ) -> A <_ C ) |
9 |
1 2 3 8
|
syl21anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( C e. ( A [,) B ) /\ -. C e. ( A (,) B ) ) ) -> A <_ C ) |
10 |
1 2
|
jca |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( C e. ( A [,) B ) /\ -. C e. ( A (,) B ) ) ) -> ( A e. RR* /\ B e. RR* ) ) |
11 |
|
simprr |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( C e. ( A [,) B ) /\ -. C e. ( A (,) B ) ) ) -> -. C e. ( A (,) B ) ) |
12 |
5
|
simp3d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ C e. ( A [,) B ) ) -> C < B ) |
13 |
10 3 12
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( C e. ( A [,) B ) /\ -. C e. ( A (,) B ) ) ) -> C < B ) |
14 |
|
elioo1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A (,) B ) <-> ( C e. RR* /\ A < C /\ C < B ) ) ) |
15 |
14
|
notbid |
|- ( ( A e. RR* /\ B e. RR* ) -> ( -. C e. ( A (,) B ) <-> -. ( C e. RR* /\ A < C /\ C < B ) ) ) |
16 |
15
|
biimpa |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. C e. ( A (,) B ) ) -> -. ( C e. RR* /\ A < C /\ C < B ) ) |
17 |
|
3anan32 |
|- ( ( C e. RR* /\ A < C /\ C < B ) <-> ( ( C e. RR* /\ C < B ) /\ A < C ) ) |
18 |
17
|
notbii |
|- ( -. ( C e. RR* /\ A < C /\ C < B ) <-> -. ( ( C e. RR* /\ C < B ) /\ A < C ) ) |
19 |
|
imnan |
|- ( ( ( C e. RR* /\ C < B ) -> -. A < C ) <-> -. ( ( C e. RR* /\ C < B ) /\ A < C ) ) |
20 |
18 19
|
bitr4i |
|- ( -. ( C e. RR* /\ A < C /\ C < B ) <-> ( ( C e. RR* /\ C < B ) -> -. A < C ) ) |
21 |
16 20
|
sylib |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. C e. ( A (,) B ) ) -> ( ( C e. RR* /\ C < B ) -> -. A < C ) ) |
22 |
21
|
imp |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. C e. ( A (,) B ) ) /\ ( C e. RR* /\ C < B ) ) -> -. A < C ) |
23 |
10 11 7 13 22
|
syl22anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( C e. ( A [,) B ) /\ -. C e. ( A (,) B ) ) ) -> -. A < C ) |
24 |
|
xeqlelt |
|- ( ( A e. RR* /\ C e. RR* ) -> ( A = C <-> ( A <_ C /\ -. A < C ) ) ) |
25 |
24
|
biimpar |
|- ( ( ( A e. RR* /\ C e. RR* ) /\ ( A <_ C /\ -. A < C ) ) -> A = C ) |
26 |
1 7 9 23 25
|
syl22anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( C e. ( A [,) B ) /\ -. C e. ( A (,) B ) ) ) -> A = C ) |
27 |
26
|
ex |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( C e. ( A [,) B ) /\ -. C e. ( A (,) B ) ) -> A = C ) ) |
28 |
|
eqcom |
|- ( A = C <-> C = A ) |
29 |
27 28
|
syl6ib |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( C e. ( A [,) B ) /\ -. C e. ( A (,) B ) ) -> C = A ) ) |
30 |
|
pm5.6 |
|- ( ( ( C e. ( A [,) B ) /\ -. C e. ( A (,) B ) ) -> C = A ) <-> ( C e. ( A [,) B ) -> ( C e. ( A (,) B ) \/ C = A ) ) ) |
31 |
29 30
|
sylib |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( C e. ( A [,) B ) -> ( C e. ( A (,) B ) \/ C = A ) ) ) |
32 |
|
orcom |
|- ( ( C e. ( A (,) B ) \/ C = A ) <-> ( C = A \/ C e. ( A (,) B ) ) ) |
33 |
31 32
|
syl6ib |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( C e. ( A [,) B ) -> ( C = A \/ C e. ( A (,) B ) ) ) ) |
34 |
|
simpr |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ C = A ) -> C = A ) |
35 |
|
simpl1 |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ C = A ) -> A e. RR* ) |
36 |
34 35
|
eqeltrd |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ C = A ) -> C e. RR* ) |
37 |
35
|
xrleidd |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ C = A ) -> A <_ A ) |
38 |
37 34
|
breqtrrd |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ C = A ) -> A <_ C ) |
39 |
|
simpl3 |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ C = A ) -> A < B ) |
40 |
34 39
|
eqbrtrd |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ C = A ) -> C < B ) |
41 |
|
simpl2 |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ C = A ) -> B e. RR* ) |
42 |
35 41 4
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ C = A ) -> ( C e. ( A [,) B ) <-> ( C e. RR* /\ A <_ C /\ C < B ) ) ) |
43 |
36 38 40 42
|
mpbir3and |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ C = A ) -> C e. ( A [,) B ) ) |
44 |
|
ioossico |
|- ( A (,) B ) C_ ( A [,) B ) |
45 |
|
simpr |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ C e. ( A (,) B ) ) -> C e. ( A (,) B ) ) |
46 |
44 45
|
sselid |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ C e. ( A (,) B ) ) -> C e. ( A [,) B ) ) |
47 |
43 46
|
jaodan |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( C = A \/ C e. ( A (,) B ) ) ) -> C e. ( A [,) B ) ) |
48 |
47
|
ex |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( C = A \/ C e. ( A (,) B ) ) -> C e. ( A [,) B ) ) ) |
49 |
33 48
|
impbid |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( C e. ( A [,) B ) <-> ( C = A \/ C e. ( A (,) B ) ) ) ) |