| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pnfxr |
|- +oo e. RR* |
| 2 |
|
elico2 |
|- ( ( A e. RR /\ +oo e. RR* ) -> ( B e. ( A [,) +oo ) <-> ( B e. RR /\ A <_ B /\ B < +oo ) ) ) |
| 3 |
1 2
|
mpan2 |
|- ( A e. RR -> ( B e. ( A [,) +oo ) <-> ( B e. RR /\ A <_ B /\ B < +oo ) ) ) |
| 4 |
|
ltpnf |
|- ( B e. RR -> B < +oo ) |
| 5 |
4
|
adantr |
|- ( ( B e. RR /\ A <_ B ) -> B < +oo ) |
| 6 |
5
|
pm4.71i |
|- ( ( B e. RR /\ A <_ B ) <-> ( ( B e. RR /\ A <_ B ) /\ B < +oo ) ) |
| 7 |
|
df-3an |
|- ( ( B e. RR /\ A <_ B /\ B < +oo ) <-> ( ( B e. RR /\ A <_ B ) /\ B < +oo ) ) |
| 8 |
6 7
|
bitr4i |
|- ( ( B e. RR /\ A <_ B ) <-> ( B e. RR /\ A <_ B /\ B < +oo ) ) |
| 9 |
3 8
|
bitr4di |
|- ( A e. RR -> ( B e. ( A [,) +oo ) <-> ( B e. RR /\ A <_ B ) ) ) |