Step |
Hyp |
Ref |
Expression |
1 |
|
pnfxr |
|- +oo e. RR* |
2 |
|
elico2 |
|- ( ( A e. RR /\ +oo e. RR* ) -> ( B e. ( A [,) +oo ) <-> ( B e. RR /\ A <_ B /\ B < +oo ) ) ) |
3 |
1 2
|
mpan2 |
|- ( A e. RR -> ( B e. ( A [,) +oo ) <-> ( B e. RR /\ A <_ B /\ B < +oo ) ) ) |
4 |
|
ltpnf |
|- ( B e. RR -> B < +oo ) |
5 |
4
|
adantr |
|- ( ( B e. RR /\ A <_ B ) -> B < +oo ) |
6 |
5
|
pm4.71i |
|- ( ( B e. RR /\ A <_ B ) <-> ( ( B e. RR /\ A <_ B ) /\ B < +oo ) ) |
7 |
|
df-3an |
|- ( ( B e. RR /\ A <_ B /\ B < +oo ) <-> ( ( B e. RR /\ A <_ B ) /\ B < +oo ) ) |
8 |
6 7
|
bitr4i |
|- ( ( B e. RR /\ A <_ B ) <-> ( B e. RR /\ A <_ B /\ B < +oo ) ) |
9 |
3 8
|
bitr4di |
|- ( A e. RR -> ( B e. ( A [,) +oo ) <-> ( B e. RR /\ A <_ B ) ) ) |