Metamath Proof Explorer


Theorem elid

Description: Characterization of the elements of the identity relation. TODO: reorder theorems to move this theorem and dfrel3 after elrid . (Contributed by BJ, 28-Aug-2022)

Ref Expression
Assertion elid
|- ( A e. _I <-> E. x A = <. x , x >. )

Proof

Step Hyp Ref Expression
1 reli
 |-  Rel _I
2 dfrel3
 |-  ( Rel _I <-> ( _I |` _V ) = _I )
3 1 2 mpbi
 |-  ( _I |` _V ) = _I
4 3 eqcomi
 |-  _I = ( _I |` _V )
5 4 eleq2i
 |-  ( A e. _I <-> A e. ( _I |` _V ) )
6 elrid
 |-  ( A e. ( _I |` _V ) <-> E. x e. _V A = <. x , x >. )
7 rexv
 |-  ( E. x e. _V A = <. x , x >. <-> E. x A = <. x , x >. )
8 5 6 7 3bitri
 |-  ( A e. _I <-> E. x A = <. x , x >. )