| Step | Hyp | Ref | Expression | 
						
							| 1 |  | risset |  |-  ( x e. B <-> E. y e. B y = x ) | 
						
							| 2 | 1 | anbi2ci |  |-  ( ( x e. B /\ C = <. x , x >. ) <-> ( C = <. x , x >. /\ E. y e. B y = x ) ) | 
						
							| 3 |  | r19.42v |  |-  ( E. y e. B ( C = <. x , x >. /\ y = x ) <-> ( C = <. x , x >. /\ E. y e. B y = x ) ) | 
						
							| 4 |  | opeq2 |  |-  ( x = y -> <. x , x >. = <. x , y >. ) | 
						
							| 5 | 4 | equcoms |  |-  ( y = x -> <. x , x >. = <. x , y >. ) | 
						
							| 6 | 5 | eqeq2d |  |-  ( y = x -> ( C = <. x , x >. <-> C = <. x , y >. ) ) | 
						
							| 7 | 6 | pm5.32ri |  |-  ( ( C = <. x , x >. /\ y = x ) <-> ( C = <. x , y >. /\ y = x ) ) | 
						
							| 8 |  | vex |  |-  y e. _V | 
						
							| 9 | 8 | ideq |  |-  ( x _I y <-> x = y ) | 
						
							| 10 |  | df-br |  |-  ( x _I y <-> <. x , y >. e. _I ) | 
						
							| 11 |  | equcom |  |-  ( x = y <-> y = x ) | 
						
							| 12 | 9 10 11 | 3bitr3i |  |-  ( <. x , y >. e. _I <-> y = x ) | 
						
							| 13 | 12 | anbi2i |  |-  ( ( C = <. x , y >. /\ <. x , y >. e. _I ) <-> ( C = <. x , y >. /\ y = x ) ) | 
						
							| 14 | 7 13 | bitr4i |  |-  ( ( C = <. x , x >. /\ y = x ) <-> ( C = <. x , y >. /\ <. x , y >. e. _I ) ) | 
						
							| 15 | 14 | rexbii |  |-  ( E. y e. B ( C = <. x , x >. /\ y = x ) <-> E. y e. B ( C = <. x , y >. /\ <. x , y >. e. _I ) ) | 
						
							| 16 | 2 3 15 | 3bitr2i |  |-  ( ( x e. B /\ C = <. x , x >. ) <-> E. y e. B ( C = <. x , y >. /\ <. x , y >. e. _I ) ) | 
						
							| 17 | 16 | rexbii |  |-  ( E. x e. A ( x e. B /\ C = <. x , x >. ) <-> E. x e. A E. y e. B ( C = <. x , y >. /\ <. x , y >. e. _I ) ) | 
						
							| 18 |  | rexin |  |-  ( E. x e. ( A i^i B ) C = <. x , x >. <-> E. x e. A ( x e. B /\ C = <. x , x >. ) ) | 
						
							| 19 |  | elinxp |  |-  ( C e. ( _I i^i ( A X. B ) ) <-> E. x e. A E. y e. B ( C = <. x , y >. /\ <. x , y >. e. _I ) ) | 
						
							| 20 | 17 18 19 | 3bitr4ri |  |-  ( C e. ( _I i^i ( A X. B ) ) <-> E. x e. ( A i^i B ) C = <. x , x >. ) |