| Step |
Hyp |
Ref |
Expression |
| 1 |
|
risset |
|- ( x e. B <-> E. y e. B y = x ) |
| 2 |
1
|
anbi2ci |
|- ( ( x e. B /\ C = <. x , x >. ) <-> ( C = <. x , x >. /\ E. y e. B y = x ) ) |
| 3 |
|
r19.42v |
|- ( E. y e. B ( C = <. x , x >. /\ y = x ) <-> ( C = <. x , x >. /\ E. y e. B y = x ) ) |
| 4 |
|
opeq2 |
|- ( x = y -> <. x , x >. = <. x , y >. ) |
| 5 |
4
|
equcoms |
|- ( y = x -> <. x , x >. = <. x , y >. ) |
| 6 |
5
|
eqeq2d |
|- ( y = x -> ( C = <. x , x >. <-> C = <. x , y >. ) ) |
| 7 |
6
|
pm5.32ri |
|- ( ( C = <. x , x >. /\ y = x ) <-> ( C = <. x , y >. /\ y = x ) ) |
| 8 |
|
vex |
|- y e. _V |
| 9 |
8
|
ideq |
|- ( x _I y <-> x = y ) |
| 10 |
|
df-br |
|- ( x _I y <-> <. x , y >. e. _I ) |
| 11 |
|
equcom |
|- ( x = y <-> y = x ) |
| 12 |
9 10 11
|
3bitr3i |
|- ( <. x , y >. e. _I <-> y = x ) |
| 13 |
12
|
anbi2i |
|- ( ( C = <. x , y >. /\ <. x , y >. e. _I ) <-> ( C = <. x , y >. /\ y = x ) ) |
| 14 |
7 13
|
bitr4i |
|- ( ( C = <. x , x >. /\ y = x ) <-> ( C = <. x , y >. /\ <. x , y >. e. _I ) ) |
| 15 |
14
|
rexbii |
|- ( E. y e. B ( C = <. x , x >. /\ y = x ) <-> E. y e. B ( C = <. x , y >. /\ <. x , y >. e. _I ) ) |
| 16 |
2 3 15
|
3bitr2i |
|- ( ( x e. B /\ C = <. x , x >. ) <-> E. y e. B ( C = <. x , y >. /\ <. x , y >. e. _I ) ) |
| 17 |
16
|
rexbii |
|- ( E. x e. A ( x e. B /\ C = <. x , x >. ) <-> E. x e. A E. y e. B ( C = <. x , y >. /\ <. x , y >. e. _I ) ) |
| 18 |
|
rexin |
|- ( E. x e. ( A i^i B ) C = <. x , x >. <-> E. x e. A ( x e. B /\ C = <. x , x >. ) ) |
| 19 |
|
elinxp |
|- ( C e. ( _I i^i ( A X. B ) ) <-> E. x e. A E. y e. B ( C = <. x , y >. /\ <. x , y >. e. _I ) ) |
| 20 |
17 18 19
|
3bitr4ri |
|- ( C e. ( _I i^i ( A X. B ) ) <-> E. x e. ( A i^i B ) C = <. x , x >. ) |