Metamath Proof Explorer


Theorem elidinxpid

Description: Characterization of the elements of the intersection of the identity relation with a Cartesian square. (Contributed by Peter Mazsa, 9-Sep-2022)

Ref Expression
Assertion elidinxpid
|- ( B e. ( _I i^i ( A X. A ) ) <-> E. x e. A B = <. x , x >. )

Proof

Step Hyp Ref Expression
1 elidinxp
 |-  ( B e. ( _I i^i ( A X. A ) ) <-> E. x e. ( A i^i A ) B = <. x , x >. )
2 inidm
 |-  ( A i^i A ) = A
3 2 rexeqi
 |-  ( E. x e. ( A i^i A ) B = <. x , x >. <-> E. x e. A B = <. x , x >. )
4 1 3 bitri
 |-  ( B e. ( _I i^i ( A X. A ) ) <-> E. x e. A B = <. x , x >. )