Metamath Proof Explorer


Theorem elif

Description: Membership in a conditional operator. (Contributed by NM, 14-Feb-2005)

Ref Expression
Assertion elif
|- ( A e. if ( ph , B , C ) <-> ( ( ph /\ A e. B ) \/ ( -. ph /\ A e. C ) ) )

Proof

Step Hyp Ref Expression
1 eleq2
 |-  ( if ( ph , B , C ) = B -> ( A e. if ( ph , B , C ) <-> A e. B ) )
2 eleq2
 |-  ( if ( ph , B , C ) = C -> ( A e. if ( ph , B , C ) <-> A e. C ) )
3 1 2 elimif
 |-  ( A e. if ( ph , B , C ) <-> ( ( ph /\ A e. B ) \/ ( -. ph /\ A e. C ) ) )