Description: Membership in a conditional operator. (Contributed by NM, 14-Feb-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | elif | |- ( A e. if ( ph , B , C ) <-> ( ( ph /\ A e. B ) \/ ( -. ph /\ A e. C ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 | |- ( if ( ph , B , C ) = B -> ( A e. if ( ph , B , C ) <-> A e. B ) ) |
|
2 | eleq2 | |- ( if ( ph , B , C ) = C -> ( A e. if ( ph , B , C ) <-> A e. C ) ) |
|
3 | 1 2 | elimif | |- ( A e. if ( ph , B , C ) <-> ( ( ph /\ A e. B ) \/ ( -. ph /\ A e. C ) ) ) |