Metamath Proof Explorer


Theorem eliinid

Description: Membership in an indexed intersection implies membership in any intersected set. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Assertion eliinid
|- ( ( A e. |^|_ x e. B C /\ x e. B ) -> A e. C )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( A e. |^|_ x e. B C /\ x e. B ) -> A e. |^|_ x e. B C )
2 eliin
 |-  ( A e. |^|_ x e. B C -> ( A e. |^|_ x e. B C <-> A. x e. B A e. C ) )
3 2 adantr
 |-  ( ( A e. |^|_ x e. B C /\ x e. B ) -> ( A e. |^|_ x e. B C <-> A. x e. B A e. C ) )
4 1 3 mpbid
 |-  ( ( A e. |^|_ x e. B C /\ x e. B ) -> A. x e. B A e. C )
5 rspa
 |-  ( ( A. x e. B A e. C /\ x e. B ) -> A e. C )
6 4 5 sylancom
 |-  ( ( A e. |^|_ x e. B C /\ x e. B ) -> A e. C )