Description: Membership in an indexed intersection implies membership in any intersected set. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | eliinid | |- ( ( A e. |^|_ x e. B C /\ x e. B ) -> A e. C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |- ( ( A e. |^|_ x e. B C /\ x e. B ) -> A e. |^|_ x e. B C ) |
|
2 | eliin | |- ( A e. |^|_ x e. B C -> ( A e. |^|_ x e. B C <-> A. x e. B A e. C ) ) |
|
3 | 2 | adantr | |- ( ( A e. |^|_ x e. B C /\ x e. B ) -> ( A e. |^|_ x e. B C <-> A. x e. B A e. C ) ) |
4 | 1 3 | mpbid | |- ( ( A e. |^|_ x e. B C /\ x e. B ) -> A. x e. B A e. C ) |
5 | rspa | |- ( ( A. x e. B A e. C /\ x e. B ) -> A e. C ) |
|
6 | 4 5 | sylancom | |- ( ( A e. |^|_ x e. B C /\ x e. B ) -> A e. C ) |