| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elim2if.1 | 
							 |-  ( if ( ph , A , if ( ps , B , C ) ) = A -> ( ch <-> th ) )  | 
						
						
							| 2 | 
							
								
							 | 
							elim2if.2 | 
							 |-  ( if ( ph , A , if ( ps , B , C ) ) = B -> ( ch <-> ta ) )  | 
						
						
							| 3 | 
							
								
							 | 
							elim2if.3 | 
							 |-  ( if ( ph , A , if ( ps , B , C ) ) = C -> ( ch <-> et ) )  | 
						
						
							| 4 | 
							
								
							 | 
							iftrue | 
							 |-  ( ph -> if ( ph , A , if ( ps , B , C ) ) = A )  | 
						
						
							| 5 | 
							
								4 1
							 | 
							syl | 
							 |-  ( ph -> ( ch <-> th ) )  | 
						
						
							| 6 | 
							
								
							 | 
							iffalse | 
							 |-  ( -. ph -> if ( ph , A , if ( ps , B , C ) ) = if ( ps , B , C ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							eqeq1d | 
							 |-  ( -. ph -> ( if ( ph , A , if ( ps , B , C ) ) = B <-> if ( ps , B , C ) = B ) )  | 
						
						
							| 8 | 
							
								7 2
							 | 
							biimtrrdi | 
							 |-  ( -. ph -> ( if ( ps , B , C ) = B -> ( ch <-> ta ) ) )  | 
						
						
							| 9 | 
							
								6
							 | 
							eqeq1d | 
							 |-  ( -. ph -> ( if ( ph , A , if ( ps , B , C ) ) = C <-> if ( ps , B , C ) = C ) )  | 
						
						
							| 10 | 
							
								9 3
							 | 
							biimtrrdi | 
							 |-  ( -. ph -> ( if ( ps , B , C ) = C -> ( ch <-> et ) ) )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							elimifd | 
							 |-  ( -. ph -> ( ch <-> ( ( ps /\ ta ) \/ ( -. ps /\ et ) ) ) )  | 
						
						
							| 12 | 
							
								5 11
							 | 
							cases | 
							 |-  ( ch <-> ( ( ph /\ th ) \/ ( -. ph /\ ( ( ps /\ ta ) \/ ( -. ps /\ et ) ) ) ) )  |