Step |
Hyp |
Ref |
Expression |
1 |
|
elim2if.1 |
|- ( if ( ph , A , if ( ps , B , C ) ) = A -> ( ch <-> th ) ) |
2 |
|
elim2if.2 |
|- ( if ( ph , A , if ( ps , B , C ) ) = B -> ( ch <-> ta ) ) |
3 |
|
elim2if.3 |
|- ( if ( ph , A , if ( ps , B , C ) ) = C -> ( ch <-> et ) ) |
4 |
|
iftrue |
|- ( ph -> if ( ph , A , if ( ps , B , C ) ) = A ) |
5 |
4 1
|
syl |
|- ( ph -> ( ch <-> th ) ) |
6 |
|
iffalse |
|- ( -. ph -> if ( ph , A , if ( ps , B , C ) ) = if ( ps , B , C ) ) |
7 |
6
|
eqeq1d |
|- ( -. ph -> ( if ( ph , A , if ( ps , B , C ) ) = B <-> if ( ps , B , C ) = B ) ) |
8 |
7 2
|
syl6bir |
|- ( -. ph -> ( if ( ps , B , C ) = B -> ( ch <-> ta ) ) ) |
9 |
6
|
eqeq1d |
|- ( -. ph -> ( if ( ph , A , if ( ps , B , C ) ) = C <-> if ( ps , B , C ) = C ) ) |
10 |
9 3
|
syl6bir |
|- ( -. ph -> ( if ( ps , B , C ) = C -> ( ch <-> et ) ) ) |
11 |
8 10
|
elimifd |
|- ( -. ph -> ( ch <-> ( ( ps /\ ta ) \/ ( -. ps /\ et ) ) ) ) |
12 |
5 11
|
cases |
|- ( ch <-> ( ( ph /\ th ) \/ ( -. ph /\ ( ( ps /\ ta ) \/ ( -. ps /\ et ) ) ) ) ) |