Metamath Proof Explorer


Theorem elima3

Description: Membership in an image. Theorem 34 of Suppes p. 65. (Contributed by NM, 14-Aug-1994)

Ref Expression
Hypothesis elima.1
|- A e. _V
Assertion elima3
|- ( A e. ( B " C ) <-> E. x ( x e. C /\ <. x , A >. e. B ) )

Proof

Step Hyp Ref Expression
1 elima.1
 |-  A e. _V
2 1 elima2
 |-  ( A e. ( B " C ) <-> E. x ( x e. C /\ x B A ) )
3 df-br
 |-  ( x B A <-> <. x , A >. e. B )
4 3 anbi2i
 |-  ( ( x e. C /\ x B A ) <-> ( x e. C /\ <. x , A >. e. B ) )
5 4 exbii
 |-  ( E. x ( x e. C /\ x B A ) <-> E. x ( x e. C /\ <. x , A >. e. B ) )
6 2 5 bitri
 |-  ( A e. ( B " C ) <-> E. x ( x e. C /\ <. x , A >. e. B ) )