Description: Membership in an image. Theorem 34 of Suppes p. 65. (Contributed by NM, 14-Aug-1994)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elima.1 | |- A e. _V |
|
Assertion | elima3 | |- ( A e. ( B " C ) <-> E. x ( x e. C /\ <. x , A >. e. B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elima.1 | |- A e. _V |
|
2 | 1 | elima2 | |- ( A e. ( B " C ) <-> E. x ( x e. C /\ x B A ) ) |
3 | df-br | |- ( x B A <-> <. x , A >. e. B ) |
|
4 | 3 | anbi2i | |- ( ( x e. C /\ x B A ) <-> ( x e. C /\ <. x , A >. e. B ) ) |
5 | 4 | exbii | |- ( E. x ( x e. C /\ x B A ) <-> E. x ( x e. C /\ <. x , A >. e. B ) ) |
6 | 2 5 | bitri | |- ( A e. ( B " C ) <-> E. x ( x e. C /\ <. x , A >. e. B ) ) |