Metamath Proof Explorer


Theorem eliman0

Description: A nonempty function value is an element of the image of the function. (Contributed by Thierry Arnoux, 25-Jun-2019)

Ref Expression
Assertion eliman0
|- ( ( A e. B /\ -. ( F ` A ) = (/) ) -> ( F ` A ) e. ( F " B ) )

Proof

Step Hyp Ref Expression
1 fvbr0
 |-  ( A F ( F ` A ) \/ ( F ` A ) = (/) )
2 orcom
 |-  ( ( A F ( F ` A ) \/ ( F ` A ) = (/) ) <-> ( ( F ` A ) = (/) \/ A F ( F ` A ) ) )
3 1 2 mpbi
 |-  ( ( F ` A ) = (/) \/ A F ( F ` A ) )
4 3 ori
 |-  ( -. ( F ` A ) = (/) -> A F ( F ` A ) )
5 breq1
 |-  ( x = A -> ( x F ( F ` A ) <-> A F ( F ` A ) ) )
6 5 rspcev
 |-  ( ( A e. B /\ A F ( F ` A ) ) -> E. x e. B x F ( F ` A ) )
7 4 6 sylan2
 |-  ( ( A e. B /\ -. ( F ` A ) = (/) ) -> E. x e. B x F ( F ` A ) )
8 fvex
 |-  ( F ` A ) e. _V
9 8 elima
 |-  ( ( F ` A ) e. ( F " B ) <-> E. x e. B x F ( F ` A ) )
10 7 9 sylibr
 |-  ( ( A e. B /\ -. ( F ` A ) = (/) ) -> ( F ` A ) e. ( F " B ) )