Step |
Hyp |
Ref |
Expression |
1 |
|
fvbr0 |
|- ( A F ( F ` A ) \/ ( F ` A ) = (/) ) |
2 |
|
orcom |
|- ( ( A F ( F ` A ) \/ ( F ` A ) = (/) ) <-> ( ( F ` A ) = (/) \/ A F ( F ` A ) ) ) |
3 |
1 2
|
mpbi |
|- ( ( F ` A ) = (/) \/ A F ( F ` A ) ) |
4 |
3
|
ori |
|- ( -. ( F ` A ) = (/) -> A F ( F ` A ) ) |
5 |
|
breq1 |
|- ( x = A -> ( x F ( F ` A ) <-> A F ( F ` A ) ) ) |
6 |
5
|
rspcev |
|- ( ( A e. B /\ A F ( F ` A ) ) -> E. x e. B x F ( F ` A ) ) |
7 |
4 6
|
sylan2 |
|- ( ( A e. B /\ -. ( F ` A ) = (/) ) -> E. x e. B x F ( F ` A ) ) |
8 |
|
fvex |
|- ( F ` A ) e. _V |
9 |
8
|
elima |
|- ( ( F ` A ) e. ( F " B ) <-> E. x e. B x F ( F ` A ) ) |
10 |
7 9
|
sylibr |
|- ( ( A e. B /\ -. ( F ` A ) = (/) ) -> ( F ` A ) e. ( F " B ) ) |