Metamath Proof Explorer


Theorem elimasn

Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof shortened by BJ, 16-Oct-2024) TODO: replace existing usages by usages of elimasn1 , remove, and relabel elimasn1 to "elimasn".

Ref Expression
Hypotheses elimasn.1
|- B e. _V
elimasn.2
|- C e. _V
Assertion elimasn
|- ( C e. ( A " { B } ) <-> <. B , C >. e. A )

Proof

Step Hyp Ref Expression
1 elimasn.1
 |-  B e. _V
2 elimasn.2
 |-  C e. _V
3 elimasng
 |-  ( ( B e. _V /\ C e. _V ) -> ( C e. ( A " { B } ) <-> <. B , C >. e. A ) )
4 1 2 3 mp2an
 |-  ( C e. ( A " { B } ) <-> <. B , C >. e. A )