Metamath Proof Explorer


Theorem elimasn1

Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) Use df-br and shorten. (Revised by BJ, 16-Oct-2024)

Ref Expression
Hypotheses elimasn1.1
|- B e. _V
elimasn1.2
|- C e. _V
Assertion elimasn1
|- ( C e. ( A " { B } ) <-> B A C )

Proof

Step Hyp Ref Expression
1 elimasn1.1
 |-  B e. _V
2 elimasn1.2
 |-  C e. _V
3 elimasng1
 |-  ( ( B e. _V /\ C e. _V ) -> ( C e. ( A " { B } ) <-> B A C ) )
4 1 2 3 mp2an
 |-  ( C e. ( A " { B } ) <-> B A C )