Metamath Proof Explorer


Theorem elimasng

Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006) TODO: replace existing usages by usages of elimasng1 , remove, and relabel elimasng1 to "elimasng".

Ref Expression
Assertion elimasng
|- ( ( B e. V /\ C e. W ) -> ( C e. ( A " { B } ) <-> <. B , C >. e. A ) )

Proof

Step Hyp Ref Expression
1 elimasng1
 |-  ( ( B e. V /\ C e. W ) -> ( C e. ( A " { B } ) <-> B A C ) )
2 df-br
 |-  ( B A C <-> <. B , C >. e. A )
3 1 2 bitrdi
 |-  ( ( B e. V /\ C e. W ) -> ( C e. ( A " { B } ) <-> <. B , C >. e. A ) )