Metamath Proof Explorer


Theorem elimasng1

Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006) Revise to use df-br and to prove elimasn1 from it. (Revised by BJ, 16-Oct-2024)

Ref Expression
Assertion elimasng1
|- ( ( B e. V /\ C e. W ) -> ( C e. ( A " { B } ) <-> B A C ) )

Proof

Step Hyp Ref Expression
1 simpr
 |-  ( ( B e. V /\ C e. W ) -> C e. W )
2 imasng
 |-  ( B e. V -> ( A " { B } ) = { x | B A x } )
3 2 adantr
 |-  ( ( B e. V /\ C e. W ) -> ( A " { B } ) = { x | B A x } )
4 simpr
 |-  ( ( ( B e. V /\ C e. W ) /\ x = C ) -> x = C )
5 4 breq2d
 |-  ( ( ( B e. V /\ C e. W ) /\ x = C ) -> ( B A x <-> B A C ) )
6 1 3 5 elabd2
 |-  ( ( B e. V /\ C e. W ) -> ( C e. ( A " { B } ) <-> B A C ) )