Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006) Revise to use df-br and to prove elimasn1 from it. (Revised by BJ, 16-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | elimasng1 | |- ( ( B e. V /\ C e. W ) -> ( C e. ( A " { B } ) <-> B A C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | |- ( ( B e. V /\ C e. W ) -> C e. W ) |
|
2 | imasng | |- ( B e. V -> ( A " { B } ) = { x | B A x } ) |
|
3 | 2 | adantr | |- ( ( B e. V /\ C e. W ) -> ( A " { B } ) = { x | B A x } ) |
4 | simpr | |- ( ( ( B e. V /\ C e. W ) /\ x = C ) -> x = C ) |
|
5 | 4 | breq2d | |- ( ( ( B e. V /\ C e. W ) /\ x = C ) -> ( B A x <-> B A C ) ) |
6 | 1 3 5 | elabd2 | |- ( ( B e. V /\ C e. W ) -> ( C e. ( A " { B } ) <-> B A C ) ) |