Step |
Hyp |
Ref |
Expression |
1 |
|
sneq |
|- ( y = B -> { y } = { B } ) |
2 |
1
|
imaeq2d |
|- ( y = B -> ( A " { y } ) = ( A " { B } ) ) |
3 |
2
|
eleq2d |
|- ( y = B -> ( z e. ( A " { y } ) <-> z e. ( A " { B } ) ) ) |
4 |
|
opeq1 |
|- ( y = B -> <. y , z >. = <. B , z >. ) |
5 |
4
|
eleq1d |
|- ( y = B -> ( <. y , z >. e. A <-> <. B , z >. e. A ) ) |
6 |
3 5
|
bibi12d |
|- ( y = B -> ( ( z e. ( A " { y } ) <-> <. y , z >. e. A ) <-> ( z e. ( A " { B } ) <-> <. B , z >. e. A ) ) ) |
7 |
|
eleq1 |
|- ( z = C -> ( z e. ( A " { B } ) <-> C e. ( A " { B } ) ) ) |
8 |
|
opeq2 |
|- ( z = C -> <. B , z >. = <. B , C >. ) |
9 |
8
|
eleq1d |
|- ( z = C -> ( <. B , z >. e. A <-> <. B , C >. e. A ) ) |
10 |
7 9
|
bibi12d |
|- ( z = C -> ( ( z e. ( A " { B } ) <-> <. B , z >. e. A ) <-> ( C e. ( A " { B } ) <-> <. B , C >. e. A ) ) ) |
11 |
|
vex |
|- y e. _V |
12 |
|
vex |
|- z e. _V |
13 |
11 12
|
elimasn |
|- ( z e. ( A " { y } ) <-> <. y , z >. e. A ) |
14 |
6 10 13
|
vtocl2g |
|- ( ( B e. V /\ C e. W ) -> ( C e. ( A " { B } ) <-> <. B , C >. e. A ) ) |