| Step | Hyp | Ref | Expression | 
						
							| 1 |  | noel |  |-  -. C e. (/) | 
						
							| 2 |  | snprc |  |-  ( -. B e. _V <-> { B } = (/) ) | 
						
							| 3 | 2 | biimpi |  |-  ( -. B e. _V -> { B } = (/) ) | 
						
							| 4 | 3 | imaeq2d |  |-  ( -. B e. _V -> ( A " { B } ) = ( A " (/) ) ) | 
						
							| 5 |  | ima0 |  |-  ( A " (/) ) = (/) | 
						
							| 6 | 4 5 | eqtrdi |  |-  ( -. B e. _V -> ( A " { B } ) = (/) ) | 
						
							| 7 | 6 | eleq2d |  |-  ( -. B e. _V -> ( C e. ( A " { B } ) <-> C e. (/) ) ) | 
						
							| 8 | 1 7 | mtbiri |  |-  ( -. B e. _V -> -. C e. ( A " { B } ) ) | 
						
							| 9 | 8 | con4i |  |-  ( C e. ( A " { B } ) -> B e. _V ) | 
						
							| 10 |  | elex |  |-  ( C e. ( A " { B } ) -> C e. _V ) | 
						
							| 11 | 9 10 | jca |  |-  ( C e. ( A " { B } ) -> ( B e. _V /\ C e. _V ) ) | 
						
							| 12 |  | elimasng1 |  |-  ( ( B e. _V /\ C e. _V ) -> ( C e. ( A " { B } ) <-> B A C ) ) | 
						
							| 13 | 12 | biimpd |  |-  ( ( B e. _V /\ C e. _V ) -> ( C e. ( A " { B } ) -> B A C ) ) | 
						
							| 14 | 11 13 | mpcom |  |-  ( C e. ( A " { B } ) -> B A C ) |