| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elimdhyp.1 |
|- ( ph -> ps ) |
| 2 |
|
elimdhyp.2 |
|- ( A = if ( ph , A , B ) -> ( ps <-> ch ) ) |
| 3 |
|
elimdhyp.3 |
|- ( B = if ( ph , A , B ) -> ( th <-> ch ) ) |
| 4 |
|
elimdhyp.4 |
|- th |
| 5 |
|
iftrue |
|- ( ph -> if ( ph , A , B ) = A ) |
| 6 |
5
|
eqcomd |
|- ( ph -> A = if ( ph , A , B ) ) |
| 7 |
6 2
|
syl |
|- ( ph -> ( ps <-> ch ) ) |
| 8 |
1 7
|
mpbid |
|- ( ph -> ch ) |
| 9 |
|
iffalse |
|- ( -. ph -> if ( ph , A , B ) = B ) |
| 10 |
9
|
eqcomd |
|- ( -. ph -> B = if ( ph , A , B ) ) |
| 11 |
10 3
|
syl |
|- ( -. ph -> ( th <-> ch ) ) |
| 12 |
4 11
|
mpbii |
|- ( -. ph -> ch ) |
| 13 |
8 12
|
pm2.61i |
|- ch |