Description: Version of elimhyp where the hypothesis is deduced from the final antecedent. See divalg for an example of its use. (Contributed by Paul Chapman, 25-Mar-2008)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elimdhyp.1 | |- ( ph -> ps ) |
|
elimdhyp.2 | |- ( A = if ( ph , A , B ) -> ( ps <-> ch ) ) |
||
elimdhyp.3 | |- ( B = if ( ph , A , B ) -> ( th <-> ch ) ) |
||
elimdhyp.4 | |- th |
||
Assertion | elimdhyp | |- ch |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimdhyp.1 | |- ( ph -> ps ) |
|
2 | elimdhyp.2 | |- ( A = if ( ph , A , B ) -> ( ps <-> ch ) ) |
|
3 | elimdhyp.3 | |- ( B = if ( ph , A , B ) -> ( th <-> ch ) ) |
|
4 | elimdhyp.4 | |- th |
|
5 | iftrue | |- ( ph -> if ( ph , A , B ) = A ) |
|
6 | 5 | eqcomd | |- ( ph -> A = if ( ph , A , B ) ) |
7 | 6 2 | syl | |- ( ph -> ( ps <-> ch ) ) |
8 | 1 7 | mpbid | |- ( ph -> ch ) |
9 | iffalse | |- ( -. ph -> if ( ph , A , B ) = B ) |
|
10 | 9 | eqcomd | |- ( -. ph -> B = if ( ph , A , B ) ) |
11 | 10 3 | syl | |- ( -. ph -> ( th <-> ch ) ) |
12 | 4 11 | mpbii | |- ( -. ph -> ch ) |
13 | 8 12 | pm2.61i | |- ch |