Description: Eliminate a membership hypothesis for weak deduction theorem, when special case B e. C is provable. (Contributed by NM, 15-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elimel.1 | |- B e. C |
|
| Assertion | elimel | |- if ( A e. C , A , B ) e. C |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimel.1 | |- B e. C |
|
| 2 | eleq1 | |- ( A = if ( A e. C , A , B ) -> ( A e. C <-> if ( A e. C , A , B ) e. C ) ) |
|
| 3 | eleq1 | |- ( B = if ( A e. C , A , B ) -> ( B e. C <-> if ( A e. C , A , B ) e. C ) ) |
|
| 4 | 2 3 1 | elimhyp | |- if ( A e. C , A , B ) e. C |