Metamath Proof Explorer


Theorem elimf

Description: Eliminate a mapping hypothesis for the weak deduction theorem dedth , when a special case G : A --> B is provable, in order to convert F : A --> B from a hypothesis to an antecedent. (Contributed by NM, 24-Aug-2006)

Ref Expression
Hypothesis elimf.1
|- G : A --> B
Assertion elimf
|- if ( F : A --> B , F , G ) : A --> B

Proof

Step Hyp Ref Expression
1 elimf.1
 |-  G : A --> B
2 feq1
 |-  ( F = if ( F : A --> B , F , G ) -> ( F : A --> B <-> if ( F : A --> B , F , G ) : A --> B ) )
3 feq1
 |-  ( G = if ( F : A --> B , F , G ) -> ( G : A --> B <-> if ( F : A --> B , F , G ) : A --> B ) )
4 2 3 1 elimhyp
 |-  if ( F : A --> B , F , G ) : A --> B