Description: Eliminate a mapping hypothesis for the weak deduction theorem dedth , when a special case G : A --> B is provable, in order to convert F : A --> B from a hypothesis to an antecedent. (Contributed by NM, 24-Aug-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elimf.1 | |- G : A --> B |
|
Assertion | elimf | |- if ( F : A --> B , F , G ) : A --> B |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimf.1 | |- G : A --> B |
|
2 | feq1 | |- ( F = if ( F : A --> B , F , G ) -> ( F : A --> B <-> if ( F : A --> B , F , G ) : A --> B ) ) |
|
3 | feq1 | |- ( G = if ( F : A --> B , F , G ) -> ( G : A --> B <-> if ( F : A --> B , F , G ) : A --> B ) ) |
|
4 | 2 3 1 | elimhyp | |- if ( F : A --> B , F , G ) : A --> B |