Metamath Proof Explorer


Theorem elimhyp

Description: Eliminate a hypothesis containing class variable A when it is known for a specific class B . For more information, see comments in dedth . (Contributed by NM, 15-May-1999)

Ref Expression
Hypotheses elimhyp.1
|- ( A = if ( ph , A , B ) -> ( ph <-> ps ) )
elimhyp.2
|- ( B = if ( ph , A , B ) -> ( ch <-> ps ) )
elimhyp.3
|- ch
Assertion elimhyp
|- ps

Proof

Step Hyp Ref Expression
1 elimhyp.1
 |-  ( A = if ( ph , A , B ) -> ( ph <-> ps ) )
2 elimhyp.2
 |-  ( B = if ( ph , A , B ) -> ( ch <-> ps ) )
3 elimhyp.3
 |-  ch
4 iftrue
 |-  ( ph -> if ( ph , A , B ) = A )
5 4 eqcomd
 |-  ( ph -> A = if ( ph , A , B ) )
6 5 1 syl
 |-  ( ph -> ( ph <-> ps ) )
7 6 ibi
 |-  ( ph -> ps )
8 iffalse
 |-  ( -. ph -> if ( ph , A , B ) = B )
9 8 eqcomd
 |-  ( -. ph -> B = if ( ph , A , B ) )
10 9 2 syl
 |-  ( -. ph -> ( ch <-> ps ) )
11 3 10 mpbii
 |-  ( -. ph -> ps )
12 7 11 pm2.61i
 |-  ps