Description: Eliminate a hypothesis containing class variable A when it is known for a specific class B . For more information, see comments in dedth . (Contributed by NM, 15-May-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elimhyp.1 | |- ( A = if ( ph , A , B ) -> ( ph <-> ps ) ) |
|
elimhyp.2 | |- ( B = if ( ph , A , B ) -> ( ch <-> ps ) ) |
||
elimhyp.3 | |- ch |
||
Assertion | elimhyp | |- ps |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimhyp.1 | |- ( A = if ( ph , A , B ) -> ( ph <-> ps ) ) |
|
2 | elimhyp.2 | |- ( B = if ( ph , A , B ) -> ( ch <-> ps ) ) |
|
3 | elimhyp.3 | |- ch |
|
4 | iftrue | |- ( ph -> if ( ph , A , B ) = A ) |
|
5 | 4 | eqcomd | |- ( ph -> A = if ( ph , A , B ) ) |
6 | 5 1 | syl | |- ( ph -> ( ph <-> ps ) ) |
7 | 6 | ibi | |- ( ph -> ps ) |
8 | iffalse | |- ( -. ph -> if ( ph , A , B ) = B ) |
|
9 | 8 | eqcomd | |- ( -. ph -> B = if ( ph , A , B ) ) |
10 | 9 2 | syl | |- ( -. ph -> ( ch <-> ps ) ) |
11 | 3 10 | mpbii | |- ( -. ph -> ps ) |
12 | 7 11 | pm2.61i | |- ps |