| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elimhyp.1 |
|- ( A = if ( ph , A , B ) -> ( ph <-> ps ) ) |
| 2 |
|
elimhyp.2 |
|- ( B = if ( ph , A , B ) -> ( ch <-> ps ) ) |
| 3 |
|
elimhyp.3 |
|- ch |
| 4 |
|
iftrue |
|- ( ph -> if ( ph , A , B ) = A ) |
| 5 |
4
|
eqcomd |
|- ( ph -> A = if ( ph , A , B ) ) |
| 6 |
5 1
|
syl |
|- ( ph -> ( ph <-> ps ) ) |
| 7 |
6
|
ibi |
|- ( ph -> ps ) |
| 8 |
|
iffalse |
|- ( -. ph -> if ( ph , A , B ) = B ) |
| 9 |
8
|
eqcomd |
|- ( -. ph -> B = if ( ph , A , B ) ) |
| 10 |
9 2
|
syl |
|- ( -. ph -> ( ch <-> ps ) ) |
| 11 |
3 10
|
mpbii |
|- ( -. ph -> ps ) |
| 12 |
7 11
|
pm2.61i |
|- ps |