Step |
Hyp |
Ref |
Expression |
1 |
|
elimhyp2v.1 |
|- ( A = if ( ph , A , C ) -> ( ph <-> ch ) ) |
2 |
|
elimhyp2v.2 |
|- ( B = if ( ph , B , D ) -> ( ch <-> th ) ) |
3 |
|
elimhyp2v.3 |
|- ( C = if ( ph , A , C ) -> ( ta <-> et ) ) |
4 |
|
elimhyp2v.4 |
|- ( D = if ( ph , B , D ) -> ( et <-> th ) ) |
5 |
|
elimhyp2v.5 |
|- ta |
6 |
|
iftrue |
|- ( ph -> if ( ph , A , C ) = A ) |
7 |
6
|
eqcomd |
|- ( ph -> A = if ( ph , A , C ) ) |
8 |
7 1
|
syl |
|- ( ph -> ( ph <-> ch ) ) |
9 |
|
iftrue |
|- ( ph -> if ( ph , B , D ) = B ) |
10 |
9
|
eqcomd |
|- ( ph -> B = if ( ph , B , D ) ) |
11 |
10 2
|
syl |
|- ( ph -> ( ch <-> th ) ) |
12 |
8 11
|
bitrd |
|- ( ph -> ( ph <-> th ) ) |
13 |
12
|
ibi |
|- ( ph -> th ) |
14 |
|
iffalse |
|- ( -. ph -> if ( ph , A , C ) = C ) |
15 |
14
|
eqcomd |
|- ( -. ph -> C = if ( ph , A , C ) ) |
16 |
15 3
|
syl |
|- ( -. ph -> ( ta <-> et ) ) |
17 |
|
iffalse |
|- ( -. ph -> if ( ph , B , D ) = D ) |
18 |
17
|
eqcomd |
|- ( -. ph -> D = if ( ph , B , D ) ) |
19 |
18 4
|
syl |
|- ( -. ph -> ( et <-> th ) ) |
20 |
16 19
|
bitrd |
|- ( -. ph -> ( ta <-> th ) ) |
21 |
5 20
|
mpbii |
|- ( -. ph -> th ) |
22 |
13 21
|
pm2.61i |
|- th |