Metamath Proof Explorer


Theorem elimhyp3v

Description: Eliminate a hypothesis containing 3 class variables. (Contributed by NM, 14-Aug-1999)

Ref Expression
Hypotheses elimhyp3v.1
|- ( A = if ( ph , A , D ) -> ( ph <-> ch ) )
elimhyp3v.2
|- ( B = if ( ph , B , R ) -> ( ch <-> th ) )
elimhyp3v.3
|- ( C = if ( ph , C , S ) -> ( th <-> ta ) )
elimhyp3v.4
|- ( D = if ( ph , A , D ) -> ( et <-> ze ) )
elimhyp3v.5
|- ( R = if ( ph , B , R ) -> ( ze <-> si ) )
elimhyp3v.6
|- ( S = if ( ph , C , S ) -> ( si <-> ta ) )
elimhyp3v.7
|- et
Assertion elimhyp3v
|- ta

Proof

Step Hyp Ref Expression
1 elimhyp3v.1
 |-  ( A = if ( ph , A , D ) -> ( ph <-> ch ) )
2 elimhyp3v.2
 |-  ( B = if ( ph , B , R ) -> ( ch <-> th ) )
3 elimhyp3v.3
 |-  ( C = if ( ph , C , S ) -> ( th <-> ta ) )
4 elimhyp3v.4
 |-  ( D = if ( ph , A , D ) -> ( et <-> ze ) )
5 elimhyp3v.5
 |-  ( R = if ( ph , B , R ) -> ( ze <-> si ) )
6 elimhyp3v.6
 |-  ( S = if ( ph , C , S ) -> ( si <-> ta ) )
7 elimhyp3v.7
 |-  et
8 iftrue
 |-  ( ph -> if ( ph , A , D ) = A )
9 8 eqcomd
 |-  ( ph -> A = if ( ph , A , D ) )
10 9 1 syl
 |-  ( ph -> ( ph <-> ch ) )
11 iftrue
 |-  ( ph -> if ( ph , B , R ) = B )
12 11 eqcomd
 |-  ( ph -> B = if ( ph , B , R ) )
13 12 2 syl
 |-  ( ph -> ( ch <-> th ) )
14 iftrue
 |-  ( ph -> if ( ph , C , S ) = C )
15 14 eqcomd
 |-  ( ph -> C = if ( ph , C , S ) )
16 15 3 syl
 |-  ( ph -> ( th <-> ta ) )
17 10 13 16 3bitrd
 |-  ( ph -> ( ph <-> ta ) )
18 17 ibi
 |-  ( ph -> ta )
19 iffalse
 |-  ( -. ph -> if ( ph , A , D ) = D )
20 19 eqcomd
 |-  ( -. ph -> D = if ( ph , A , D ) )
21 20 4 syl
 |-  ( -. ph -> ( et <-> ze ) )
22 iffalse
 |-  ( -. ph -> if ( ph , B , R ) = R )
23 22 eqcomd
 |-  ( -. ph -> R = if ( ph , B , R ) )
24 23 5 syl
 |-  ( -. ph -> ( ze <-> si ) )
25 iffalse
 |-  ( -. ph -> if ( ph , C , S ) = S )
26 25 eqcomd
 |-  ( -. ph -> S = if ( ph , C , S ) )
27 26 6 syl
 |-  ( -. ph -> ( si <-> ta ) )
28 21 24 27 3bitrd
 |-  ( -. ph -> ( et <-> ta ) )
29 7 28 mpbii
 |-  ( -. ph -> ta )
30 18 29 pm2.61i
 |-  ta