Step |
Hyp |
Ref |
Expression |
1 |
|
elimhyp4v.1 |
|- ( A = if ( ph , A , D ) -> ( ph <-> ch ) ) |
2 |
|
elimhyp4v.2 |
|- ( B = if ( ph , B , R ) -> ( ch <-> th ) ) |
3 |
|
elimhyp4v.3 |
|- ( C = if ( ph , C , S ) -> ( th <-> ta ) ) |
4 |
|
elimhyp4v.4 |
|- ( F = if ( ph , F , G ) -> ( ta <-> ps ) ) |
5 |
|
elimhyp4v.5 |
|- ( D = if ( ph , A , D ) -> ( et <-> ze ) ) |
6 |
|
elimhyp4v.6 |
|- ( R = if ( ph , B , R ) -> ( ze <-> si ) ) |
7 |
|
elimhyp4v.7 |
|- ( S = if ( ph , C , S ) -> ( si <-> rh ) ) |
8 |
|
elimhyp4v.8 |
|- ( G = if ( ph , F , G ) -> ( rh <-> ps ) ) |
9 |
|
elimhyp4v.9 |
|- et |
10 |
|
iftrue |
|- ( ph -> if ( ph , A , D ) = A ) |
11 |
10
|
eqcomd |
|- ( ph -> A = if ( ph , A , D ) ) |
12 |
11 1
|
syl |
|- ( ph -> ( ph <-> ch ) ) |
13 |
|
iftrue |
|- ( ph -> if ( ph , B , R ) = B ) |
14 |
13
|
eqcomd |
|- ( ph -> B = if ( ph , B , R ) ) |
15 |
14 2
|
syl |
|- ( ph -> ( ch <-> th ) ) |
16 |
12 15
|
bitrd |
|- ( ph -> ( ph <-> th ) ) |
17 |
|
iftrue |
|- ( ph -> if ( ph , C , S ) = C ) |
18 |
17
|
eqcomd |
|- ( ph -> C = if ( ph , C , S ) ) |
19 |
18 3
|
syl |
|- ( ph -> ( th <-> ta ) ) |
20 |
|
iftrue |
|- ( ph -> if ( ph , F , G ) = F ) |
21 |
20
|
eqcomd |
|- ( ph -> F = if ( ph , F , G ) ) |
22 |
21 4
|
syl |
|- ( ph -> ( ta <-> ps ) ) |
23 |
16 19 22
|
3bitrd |
|- ( ph -> ( ph <-> ps ) ) |
24 |
23
|
ibi |
|- ( ph -> ps ) |
25 |
|
iffalse |
|- ( -. ph -> if ( ph , A , D ) = D ) |
26 |
25
|
eqcomd |
|- ( -. ph -> D = if ( ph , A , D ) ) |
27 |
26 5
|
syl |
|- ( -. ph -> ( et <-> ze ) ) |
28 |
|
iffalse |
|- ( -. ph -> if ( ph , B , R ) = R ) |
29 |
28
|
eqcomd |
|- ( -. ph -> R = if ( ph , B , R ) ) |
30 |
29 6
|
syl |
|- ( -. ph -> ( ze <-> si ) ) |
31 |
27 30
|
bitrd |
|- ( -. ph -> ( et <-> si ) ) |
32 |
|
iffalse |
|- ( -. ph -> if ( ph , C , S ) = S ) |
33 |
32
|
eqcomd |
|- ( -. ph -> S = if ( ph , C , S ) ) |
34 |
33 7
|
syl |
|- ( -. ph -> ( si <-> rh ) ) |
35 |
|
iffalse |
|- ( -. ph -> if ( ph , F , G ) = G ) |
36 |
35
|
eqcomd |
|- ( -. ph -> G = if ( ph , F , G ) ) |
37 |
36 8
|
syl |
|- ( -. ph -> ( rh <-> ps ) ) |
38 |
31 34 37
|
3bitrd |
|- ( -. ph -> ( et <-> ps ) ) |
39 |
9 38
|
mpbii |
|- ( -. ph -> ps ) |
40 |
24 39
|
pm2.61i |
|- ps |