Description: Elimination of a conditional operator contained in a wff ps . (Contributed by NM, 15-Feb-2005) (Proof shortened by NM, 25-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elimif.1 | |- ( if ( ph , A , B ) = A -> ( ps <-> ch ) ) |
|
elimif.2 | |- ( if ( ph , A , B ) = B -> ( ps <-> th ) ) |
||
Assertion | elimif | |- ( ps <-> ( ( ph /\ ch ) \/ ( -. ph /\ th ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimif.1 | |- ( if ( ph , A , B ) = A -> ( ps <-> ch ) ) |
|
2 | elimif.2 | |- ( if ( ph , A , B ) = B -> ( ps <-> th ) ) |
|
3 | iftrue | |- ( ph -> if ( ph , A , B ) = A ) |
|
4 | 3 1 | syl | |- ( ph -> ( ps <-> ch ) ) |
5 | iffalse | |- ( -. ph -> if ( ph , A , B ) = B ) |
|
6 | 5 2 | syl | |- ( -. ph -> ( ps <-> th ) ) |
7 | 4 6 | cases | |- ( ps <-> ( ( ph /\ ch ) \/ ( -. ph /\ th ) ) ) |