| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elimifd.1 | 
							 |-  ( ph -> ( if ( ps , A , B ) = A -> ( ch <-> th ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							elimifd.2 | 
							 |-  ( ph -> ( if ( ps , A , B ) = B -> ( ch <-> ta ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							exmid | 
							 |-  ( ps \/ -. ps )  | 
						
						
							| 4 | 
							
								3
							 | 
							biantrur | 
							 |-  ( ch <-> ( ( ps \/ -. ps ) /\ ch ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							a1i | 
							 |-  ( ph -> ( ch <-> ( ( ps \/ -. ps ) /\ ch ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							andir | 
							 |-  ( ( ( ps \/ -. ps ) /\ ch ) <-> ( ( ps /\ ch ) \/ ( -. ps /\ ch ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							a1i | 
							 |-  ( ph -> ( ( ( ps \/ -. ps ) /\ ch ) <-> ( ( ps /\ ch ) \/ ( -. ps /\ ch ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							iftrue | 
							 |-  ( ps -> if ( ps , A , B ) = A )  | 
						
						
							| 9 | 
							
								8 1
							 | 
							syl5 | 
							 |-  ( ph -> ( ps -> ( ch <-> th ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							pm5.32d | 
							 |-  ( ph -> ( ( ps /\ ch ) <-> ( ps /\ th ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							iffalse | 
							 |-  ( -. ps -> if ( ps , A , B ) = B )  | 
						
						
							| 12 | 
							
								11 2
							 | 
							syl5 | 
							 |-  ( ph -> ( -. ps -> ( ch <-> ta ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							pm5.32d | 
							 |-  ( ph -> ( ( -. ps /\ ch ) <-> ( -. ps /\ ta ) ) )  | 
						
						
							| 14 | 
							
								10 13
							 | 
							orbi12d | 
							 |-  ( ph -> ( ( ( ps /\ ch ) \/ ( -. ps /\ ch ) ) <-> ( ( ps /\ th ) \/ ( -. ps /\ ta ) ) ) )  | 
						
						
							| 15 | 
							
								5 7 14
							 | 
							3bitrd | 
							 |-  ( ph -> ( ch <-> ( ( ps /\ th ) \/ ( -. ps /\ ta ) ) ) )  |