Metamath Proof Explorer


Theorem elin3

Description: Membership in a class defined as a ternary intersection. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypothesis elin3.x
|- X = ( ( B i^i C ) i^i D )
Assertion elin3
|- ( A e. X <-> ( A e. B /\ A e. C /\ A e. D ) )

Proof

Step Hyp Ref Expression
1 elin3.x
 |-  X = ( ( B i^i C ) i^i D )
2 elin
 |-  ( A e. ( B i^i C ) <-> ( A e. B /\ A e. C ) )
3 2 anbi1i
 |-  ( ( A e. ( B i^i C ) /\ A e. D ) <-> ( ( A e. B /\ A e. C ) /\ A e. D ) )
4 1 elin2
 |-  ( A e. X <-> ( A e. ( B i^i C ) /\ A e. D ) )
5 df-3an
 |-  ( ( A e. B /\ A e. C /\ A e. D ) <-> ( ( A e. B /\ A e. C ) /\ A e. D ) )
6 3 4 5 3bitr4i
 |-  ( A e. X <-> ( A e. B /\ A e. C /\ A e. D ) )