Metamath Proof Explorer


Theorem elind

Description: Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypotheses elind.1
|- ( ph -> X e. A )
elind.2
|- ( ph -> X e. B )
Assertion elind
|- ( ph -> X e. ( A i^i B ) )

Proof

Step Hyp Ref Expression
1 elind.1
 |-  ( ph -> X e. A )
2 elind.2
 |-  ( ph -> X e. B )
3 elin
 |-  ( X e. ( A i^i B ) <-> ( X e. A /\ X e. B ) )
4 1 2 3 sylanbrc
 |-  ( ph -> X e. ( A i^i B ) )