Description: Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elind.1 | |- ( ph -> X e. A ) |
|
elind.2 | |- ( ph -> X e. B ) |
||
Assertion | elind | |- ( ph -> X e. ( A i^i B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elind.1 | |- ( ph -> X e. A ) |
|
2 | elind.2 | |- ( ph -> X e. B ) |
|
3 | elin | |- ( X e. ( A i^i B ) <-> ( X e. A /\ X e. B ) ) |
|
4 | 1 2 3 | sylanbrc | |- ( ph -> X e. ( A i^i B ) ) |