Description: Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elinel2 | |- ( A e. ( B i^i C ) -> A e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | |- ( A e. ( B i^i C ) <-> ( A e. B /\ A e. C ) ) |
|
| 2 | 1 | simprbi | |- ( A e. ( B i^i C ) -> A e. C ) |