Metamath Proof Explorer


Theorem eliniseg

Description: Membership in the inverse image of a singleton. An application is to express initial segments for an order relation. See for example Definition 6.21 of TakeutiZaring p. 30. (Contributed by NM, 28-Apr-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Hypothesis eliniseg.1
|- C e. _V
Assertion eliniseg
|- ( B e. V -> ( C e. ( `' A " { B } ) <-> C A B ) )

Proof

Step Hyp Ref Expression
1 eliniseg.1
 |-  C e. _V
2 elinisegg
 |-  ( ( B e. V /\ C e. _V ) -> ( C e. ( `' A " { B } ) <-> C A B ) )
3 1 2 mpan2
 |-  ( B e. V -> ( C e. ( `' A " { B } ) <-> C A B ) )